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Chapter 1

Introduction

Isothetic polygon has an important role in the field of image processing and shape analysis. The
generation of algorithms for construction of isothetic polygon is significant in the domain of digital
geometry. The isothetic polygon has applications in different fields, which leads to development of
various algorithms for analysis of the isothetic polygon. It is an emerging area of interest among the
researchers and engineers from Computer Science and Information Technology. Study of isothetic
polygons may find a special role in Robotics for path planning, object gripping etc. The algorithms
discussed here are applied on digital objects for its shape analysis.

The family of shortest isothetic paths (FSIP) between two grid points in a digital object A is the
union of all possible shortest isothetic paths (SIPs) between them. A novel algorithm to compute the
FSIP between two grid points of the inner isothetic cover P that inscribes the object A, is proposed
here. The algorithm is based on certain combinatorial rules derived from the characterization of
FSIP. A preprocessing is done at first with the grid points comprising the border BP of P in
O(n log n) time, n being the number of points in BP . Then, for any pair of grid points in P , the
algorithm computes their FSIP in O(n) time. As shown in this chapter, the FSIP can be useful for
different shape-related applications, such as finding a critical region inside an object. Experimental
results show the effectiveness of the algorithm and its further prospects in shape analysis and related
applications.

The construction of a minimum-area geometric cover of a digital object is important in many
fields of image analysis and computer vision. We propose here the first algorithm for constructing a
minimum-area polygonal cover of a 2D digital object as perceived on a uniform triangular grid. The
polygonal cover is triangular in the sense that its boundary consists of a sequence of edges on the
underlying grid. The proposed algorithm is based on certain combinatorial properties of a digital
object on a grid, and it computes the tightest cover in time linear in perimeter of the object. We
present experimental results to demonstrate the efficacy, robustness, and versatility of the algorithm,
and they indicate that the runtime varies inversely with the grid size.

This report is organized as follows. Chapter 2 contains the algorithm to construct family of
shortest isothetic paths between two grid points inside a digital object. The family of shortest
isothetic paths is unique, which contains the region through which all possible SIPs can pass. The
construction of outer triangular cover is discussed in chapter 3. First the object is imposed on
background triangular grid. By using some combinatorial rules outer triangular cover of the object
is obtained, which tightly covers the object. The application of triangular cover in shape analysis is
presented in 4. The algorithm to determine largest rectangle and its corresponding rectangularization
is proposed in 5. Concluding remarks are given in chapter 6.
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Chapter 2

On Finding the Family of Shortest
Isothetic Paths inside a Digital
Object

1Dutt, M., A. Biswas, P. Bhowmick, and B. B. Bhattacharya (2014). On the Family of Shortest
Isothetic Paths in a Digital ObjectAn Algorithm with Applications. Computer Vision and Image
Understanding 129, 75-88.

2.1 Introduction

Shortest path algorithms and their numerous applications in various fields have been studied exten-
sively over several decades in different algorithmic paradigms, such as graph theory, computational
geometry, and operations research. Some of the worth-mentioning applications of shortest paths
are networking, robotics, GIS, VLSI design, resource allocation and collection, TSP with neigh-
borhoods, etc. [2, 17, 27, 34, 53, 60, 61]. Due to such a vast range of applications, the variation
in constraint formulation and customization has also become quite engrossing, as evidenced in the
related literature [23, 24, 25, 18, 32, 40, 41, 42, 55]. Shortest paths are also found to be useful in
image processing and computer vision. For example, in [26], different deformed templates, such as
deforming contours, articulated objects, and smooth contours have been tracked in simple and com-
plicated backgrounds using the idea of shortest path. Nevertheless, the design of such algorithms
still poses newer challenges in various emerging areas of image analysis and computer vision. This
mandates further investigation of application-specific shortest-path problems in the framework of
digital geometry.

The work in [28] is focused on finding a shortest isothetic path (SIP) inside a digital object A
(without any hole) laid on a grid G (Sec. 3.2), such that the SIP lies entirely inside A and consists
of moves along grid edges only. Although the problem has some similarity with certain problems of
computational geometry, no efficient algorithmic solution is available for the shortest isothetic path
problem till date. For a given grid size, the mentioned algorithm runs in O(n log n) time, n being
the number of grid points on the border of the inner isothetic cover P , which is the maximum-area
isothetic polygon inscribing A [7, 8].

1*
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Figure 2.1: Family of SIPs (shown in red) between two grid points (in blue color). Left: A digital
object, A. Middle: All possible SIPs in the FSIP are monotone. Right: All possible SIPs in the
FSIP are non-monotone. The boundary BP of the inner isothetic cover P of A is shown by black
lines. The infimum and the supremum SIPs defining the boundary of each FSIP are shown by thick
red lines, which sometimes overlap with some portions of BP .

A shortest isothetic path—whether monotone or not—between two points is usually not unique.
Hence, the focus of the work proposed here is to find the (unique) family of shortest isothetic paths
(FSIP) between two points. The FSIP between two points is the region containing all possible SIPs
between them. The definitions and terminologies related to FSIP are given in Sec. 3.2. An FSIP
possesses some interesting topological properties, which are derived and explained in Sec. 2.3. Based
on these properties, the algorithm for computing the FSIP is designed, which has been described
and demonstrated in Sec. 2.4. The nature of an FSIP depends on the complexity of its SIPs. As
an introductory example, see Fig. 3.1. In Fig. 3.1(left), a digital object, A, is shown, and two
FSIPs for two pairs of points in A are shown in Fig. 3.1(middle, right). All SIPs between the two
points in Fig. 3.1(middle) are monotone, and those in Fig. 3.1(right) are non-monotone. Further
experimentation and related results with detailed explanations are given in Sec. 5.5.

2.2 Definitions and Preliminaries

A digital object, A (henceforth referred to as an object), is a finite subset of Z2, which consists of one
or more k(= 4 or 8)-connected components [38]. In this chapter, the considered object is a single
8-connected component. The following definitions are required in the context of this work.

Definition 1 (Grid). The background grid is given by G = (H,V), where H and V represent the
respective sets of (equi-spaced) horizontal grid lines and vertical grid lines. The grid size, g, is
defined as the distance between two consecutive horizontal/vertical grid lines. A grid point is the
point between intersection of a horizontal and a vertical grid line.

Definition 2 (Inner Isothetic Cover). An isothetic polygon has its vertices as grid points and its
edges lying on grid lines. The inner isothetic cover of A is the maximum-area isothetic polygon P
that inscribes A (Fig. 3.1).

Definition 3 (SIP). An (simple) isothetic path π(p,q) from a grid point p ∈ P to a grid point q ∈ P
is a sequence of 4-connected grid points such that all the constituent points of π(p,q) are distinct and
lie on or inside P . For two given points in P , a/the shortest isothetic path (SIP) has the minimum
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Figure 2.2: Different types of concavity (polygon interior shown in gray).

length over all isothetic paths between them. A SIP is said to be monotone if it consists of moves
only in one or two (orthogonal) directions.

Definition 4 (FSIP). The union of all possible SIPs between two given points p ∈ P and q ∈ P
defines their family of SIPs (FSIP), denoted by F(p,q). The set F(p,q) is equivalent to a (isothetic)
region bordered by two SIPs between p and q, which are said to be its extremum SIPs. If the border of
F(p,q) is traversed from p to q such that each other SIP in F(p,q) lies to the left during the traversal,
then that path of traversal is one of the two extremum SIPs, which is termed as the infimum SIP
and denoted by πinf

(p,q). Similarly, on traversing the border of F(p,q) from q to p with each other SIP
lying to the left during the traversal, the other extremum SIP is obtained, termed as the supremum
SIP and denoted by πsup

(p,q).

The set F(p,q) is, therefore, bounded and well-defined by its two extremum SIPs, namely πinf
(p,q)

and πsup
(p,q). Figure 3.1 shows a couple of typical examples. The crux of this algorithm is to find

πinf
(p,q) and πsup

(p,q), which, in turn, defines the region that contains all the SIPs comprising F(p,q). The

numbers of grid points for all SIPs in F(p,q) are same, as they all have the minimum length. As a
degeneracy, if there is exactly one SIP between p and q, then F(p,q) contains only that SIP, which is

also πinf
(p,q) and πsup

(p,q) coincident with each other. Otherwise, F(p,q) will have distinct πinf
(p,q) and πsup

(p,q),

which although can have partial overlaps. The following definitions are needed to characterize such
overlaps between πinf

(p,q) and πsup
(p,q), and hence to characterize F(p,q) defined by them.

Definition 5 (Convexity and Concavity). Since P is an isothetic polygon, it would have 900 and
2700 vertices, which are referred to as vertices of type 1 and type 3, respectively. The sequence of
vertices of P is such that P always lies left of each edge during its traversal. In this vertex sequence, a
pair of consecutive vertices of type 1 gives rise to a convexity, whereas a pair of consecutive vertices
of type 3 gives rise to a concavity. The straight line passing through two consecutive vertices of
type 1 (type 3) is called the convexity line (concavity line).

A vertex pattern of 1331 may occur in four possible ways w.r.t. orientation: Type L (left), Type R
(right), Type T (top), and Type B (bottom) (Fig. 2.2). If there are more than two consecutive vertices
of type 3, then the concavity is termed as compound concavity.

Definition 6 (Convex Region). A convex region C corresponding to a convexity line l is the
maximum-area rectangle fully contained in P , having its one side as l, and the endpoints of the
side opposite to l (i.e., its open side) lying on the border of P .

For example, in Fig. 2.3(left), the convex region is closed on three sides by the edges (vi−2, vi−1),
(vi−1, vi), and (vi, vi+1), and open on the side defined by the horizontal line passing through vi−2.
In Fig. 2.3(right), the convex region is closed similarly on three sides by the edges as in Fig. 2.3(left),
and it is open on the side defined by the nearest concavity line.
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Figure 2.3: Instances of convex region (hatched in white) defined by convexity line vivi−1 on one
side and nearest vertex vi−2 or vi+1 (left) or nearest concavity line (right) on the opposite side.
Here, a vertex vi is denoted by i for simplicity.

Definition 7 (Convex Isothetic Polygon). A convex isothetic polygon is an isothetic polygon whose
intersection with any grid line is either empty or a single line segment [10].

As evident from Definitions 4 and 7, and from examples shown in Figure 3.1, an FSIP in general
can also be perceived as a set of convex isothetic polygons, which are connected by grid edges. For
example, in Figure 3.1(right), the FSIP has four convex isothetic polygons joined by grid edges in
succession. The following definitions are used to characterize an FSIP.

Definition 8 (Convexity Index). The convexity index, α, of F(p,q) is defined as the number of
convex isothetic polygons that it consists of.

For example, for the FSIP shown in Fig. 3.1(middle), α = 1; and for the one in Fig. 3.1(right),
α = 4.

Definition 9 (Bridge). If F(p,q) consists of two or more convex isothetic polygons, then every two

consecutive polygons are connected by a sub-path common to πinf
(p,q) and πsup

(p,q), which is called a

bridge.

Each bridge in F(p,q) lies on one or more (collinear) lines of concavity, with its two endpoints
coinciding with two of the endpoints (type 3 vertices) of those concavity line(s). Each SIP in F(p,q)

passes through all the bridges in F(p,q).
Bridges are of two types, namely Z-bridge and U-bridge, as shown in Fig. 2.4, which have the

following characterization. W.l.o.g., let a bridge be vertical. If the directions of horizontal movements
of a SIP preceding and following this bridge are same, then the corresponding bridge is termed as
Z-bridge (Fig. 2.4(left)). But if the aforesaid directions are opposite, then the corresponding bridge
is termed as U-bridge (Fig. 2.4(right)). A Z-bridge does not break the monotonicity of a SIP, whereas
a U-bridge always breaks the monotonicity of a SIP. In other words, the presence of a U-bridge in a
SIP implies that the SIP is non-monotone.

Definition 10 (Monotone and Non-Monotone FSIP). If F(p,q) consists of monotone SIPs, then it
is said be a monotone FSIP; otherwise, it is a non-monotone FSIP.

It is easy to observe that F(p,q) cannot contain both monotone and non-monotone SIPs, since
the length of a non-monotone SIP between p and q is always greater than that of a monotone SIP
between p and q.
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Figure 2.4: Two types of bridges. Note that in both cases, F(p,q) consists of R1, R2 (which are
two convex isothetic polygons), and the bridge joining them. The bridge is the common sub-path
between πinf

(p,q) and πsup
(p,q).

2.3 Characterization of FSIP

It is evident from Definition 4 that F(p,q) may be conceived as an isothetic polygon, which is either
simple or non-simple in the sense that it may have intersecting edges. The intersecting edges,
in particular, give rise to bridges. Let R(p,q) denote the rectangle having p and q as two of its
diagonally opposite corners. Then the location of the aforesaid isothetic polygon corresponding to
F(p,q) has two possible topological cases, having a few combinatorial sub-cases, as explained below.

1. F(p,q) ⊆ R(p,q).

(a) F(p,q) is monotone.

i. If F(p,q) is simple, then it has no bridge (Fig. 2.5(left)).

ii. If F(p,q) is non-simple, then it has one or more Z-bridges but no U-bridge (Fig. 2.4(left)).

These are proved in Lemma 1 and Lemma 2.

(b) If F(p,q) is non-monotone, then it is always non-simple, has one or more U-bridges (and
may or may not contain any Z-bridge). This is proved in Lemma 2.

2. If F(p,q) 6⊆ R(p,q), then it is non-monotone, non-simple, and has one or more U-bridges (may or
may not contain any Z-bridge). This is evident from Fig. 2.4(right) and proved in Theorem 2.

When a SIP lies outside R(p,q), it passes through at least one U-bridge that lies outside R(p,q).
The algorithm proposed in Sec. 2.4, while computing the extremum SIPs by traversing along the
two consecutive sides of R(p,q), determines each such U-bridge lying outside R(p,q) and the corre-
sponding isothetic convex polygons of F(p,q) connected by it. See, for example, the illustration in
Fig. 2.4(right). Here the line of concavity is outside R(p,q). Hence, for any π(p,q), there is a sub-path
to the right side of R(p,q). The union of all these sub-paths over all SIPs from p to q defines the
portion of F(p,q) lying outside R(p,q). And all the sub-paths in this portion passes through the

7
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Figure 2.5: Two possible cases when F(p,q) ⊆ R.

U-bridge lying outside R(p,q). Detailed explanation is given in Sec. 2.4. First the following lemmas
on a monotone SIP are considered.

Lemma 1. If a SIP π(p,q) is monotone, then it lies in R(p,q), and hence its length is given by the
semi-perimeter of R(p,q).

Proof. As π(p,q) is monotone, its length is |π(p,q)| = abs(x
(g)
p −x(g)q )+abs(y

(g)
p −y(g)q ), where (x

(g)
p , y

(g)
p )

and (x
(g)
q , y

(g)
q ) denote the respective coordinates of p and q, measured in grid units. If π(p,q) goes

outside R(p,q), then the sum of lengths of its horizontal (or vertical) sub-paths would be greater than

abs(x
(g)
p − x(g)q ) (or abs(y

(g)
p − y(g)q )), wherein lies the contradiction.

Lemma 2. F(p,q) is monotone if and only if any SIP between p and q is monotone.

Proof. From Lemma 1, it is clear that if a SIP (between p and q) is monotone and another SIP is
non-monotone, then the length of the latter would be greater than that of the former, which is a
contradiction. Hence, either all SIPs in F(p,q) are monotone or all of them are non-monotone.

The theorem on monotonicity of F(p,q), considering its containment in R(p,q) is as follows.

Theorem 1 (FSIP monotonicity). If F(p,q) is monotone, then it lies in R(p,q). However, the con-
dition F(p,q) ⊆ R(p,q) does not guarantee the monotonicity of F(p,q).

Proof. By Lemma 2, it is clear that F(p,q) is monotone if and only if all SIPs between p and q are
monotone. By Lemma 1, all monotone SIPs always lie in R(p,q), which implies F(p,q) lies in R(p,q).

But the converse is not true, since a non-monotone FSIP may lie in R(p,q), as evident from the
illustration in Fig. 2.5(right).

The theorem that explicates the necessary and sufficient condition of a non-monotone FSIP is
as follows.

Theorem 2 (FSIP non-monotonicity). F(p,q) is non-monotone if and only if it has a U-bridge.

8
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πinf(p,q) = πsup(p,q)

Figure 2.6: The SIP between p and q is unique.

Proof. A monotone FSIP is either an isothetic convex polygon without any bridge (Fig. 2.5(left))
or a sequence of isothetic regions (i.e., sub-polygons of P ) connected by one or more Z-bridges
(Fig. 2.4(left)). Consider a bridge, which is, w.l.o.g., a vertical line segment. If the horizontal move-
ments preceding and following this bridge are in same direction, then it is a Z-bridge (Fig. 2.4(left));
and if they are in opposite directions, then it is a U-bridge (Fig. 2.4(right)). Thus, a SIP with a
U-bridge contains three different movements, which implies that it is non-monotone (Definition 3).
Hence, by Lemma 2, if a SIP from p to q has a U-bridge, then F(p,q) is non-monotone.

The converse proof is similar. If F(p,q) is non-monotone, then each π(p,q) ∈ F(p,q) is non-monotone
(Lemma 2) and hence consists of more than two directions. As explained above, the horizontal
movements preceding and following a Z-bridge are in same direction. So, the monotonicity breaks
only due to U-bridge.

From Theorem 1 and Theorem 2, the following can be inferred.

Corollary 1 (FSIP uniqueness). For two given points p and q, the family of their shortest isothetic
paths in P , i.e., F(p,q), is unique.

Further, when there exists exactly one SIP between p and q, then πinf
(p,q) and πsup

(p,q) entirely

coincide, and F(p,q) is just a single isothetic path. This is a very typical case, which occurs when p
and q lie on the perimeter of P , and there is a Z-bridge between them, on which two or more lines
of concavity are incident (Fig. 2.6).

To characterize the FSIP now, the sequence of its constituent isothetic sub-polygons and bridges
are used. The theorems are as follows.

Theorem 3 (FSIP sub-polygons). All the sub-polygons in F(p,q) are simple isothetic convex poly-
gons.

Proof. F(p,q) consists of sub-polygons, connected by bridges (Theorem 2). It is easy to observe
that each of these sub-polygons is simple, since F(p,q) is not simple only at bridges. To prove that

a sub-polygon Ri is an isothetic convex polygon, observe that the part of πinf
(p,q) and the part of

πsup
(p,q) defining the border of Ri are both monotone, since the sub-polygon Ri does not contain any

bridge in general, and any U-bridge in particular. Hence, none of those parts of πinf
(p,q) and πsup

(p,q) has

two consecutive vertices of type 3 [10]. This implies Ri has no two consecutive vertices of type 3,
wherefore Ri is an isothetic convex polygon.

Theorem 4 (FSIP bridges). Each π(p,q) ∈ F(p,q) has the same sequence of bridges, B(p,q), and hence
passes through the same sequence of (simple) convex isothetic polygons, R(p,q).

9
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Proof. The proof is done by induction. From Corollary 1 and Theorem 3, F(p,q) can be represented
by a unique sequence of convex isothetic polygons, namelyR(p,q), intertwined by a unique sequence of
bridges. Let B1 be the first bridge in B(p,q). Then by Definition 9, B1 connects the first two polygons
R1 and R2 in R(p,q). Let p′1 be the point where R1 is incident on B1 and h1 be the horizontal line
passing through p′1. Let, w.lo.g., q be lying somewhere below h1, as shown in Fig. 2.7. Then, in
order to reach q, any SIP from p has to pass through p′1 and hence contain B1.

For the induction hypothesis, assume that each π(p,q) from p has passed throughR1, B1, R2, B2, . . . , Ri.
The induction step is proved that π(p,q) enters Ri+1.

Let p′′i−1 and p′i be the respective points at which Ri is incident on Bi−1 and Bi. As shown in
Fig. 2.7, if vi be the vertical line perpendicular to Bi and passing through p′i, then after reaching
p′i from p′′i−1, π(p,q) has to move along Bi, since any other direction would result in more than two
types of moves inside Ri, thereby contradicting the minimum path length of a SIP. It cannot also
move upwards along vi, since the bridge Bi is not along that direction. So, it enters Ri+1 through
Bi, whence the proof.

The above theorem leads to a relation between the number of bridges in F(p,q) and its convexity
index (Definition 8). The theorem is as follows.

Theorem 5 (Convexity index). The convexity index of F(p,q) is α = β + 1, where β is the number
of bridges in F(p,q).

Proof. From Theorem 4, each π(p,q) ∈ F(p,q) passes through β bridges. Each bridge Bi is either a
U-bridge or a Z-bridge, and connects two convex isothetic polygons, namely Ri and Ri+1. As the
sequence of these polygons and the sequence of bridges are both unique (Corollary 1), the proof
follows.

2.4 Algorithm to Compute FSIP

Algorithm Find-FSIP computes F(p,q) by finding its extremum SIPs. As shown in Algorithm 1, its
input is the (ordered) list L containing vertices of P , two lexicographically sorted lists consisting of
vertices and edge points (i.e., all grid points on the boundary of P ), which are denoted as Lx (x
as primary key and y as secondary key) and Ly (y as primary key and x as secondary key), and
p, q as the start and the end points. The procedure Find-U-Bridges is used to find the sequence
of U-bridges between p and q, and the pair of endpoints defining each bridge is stored in the array
B (Step 1). Note that B is initialized with p and appended with q in Find-U-Bridges (Steps 2
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Figure 2.8: Removing intersection points based on vertex indices.

Algorithm 1: Find-FSIP
Input: L,Lx, Ly , p, q
Output: F(p,q)

B ← Find-U-Bridges(p, q)
F(p,q) ← ∅, i← 0

do
πinf
(p,q)

← Find-Extremum(B[i], B[i+ 1])

πsup
(p,q)

← Find-Extremum(B[i+ 1], B[i])

F(p,q) ← F(p,q)∪ Find-Region(πinf
(p,q)

, πsup
(p,q)

)

if B[i+ 1] 6= q then
F(p,q) ← F(p,q)∪ Append-Bridge(B[i+ 1], B[i+ 2])
i← i+ 2

while B[i+ 1] 6= q ;
return F(p,q)

and 2). For each ordered point pair (B[i], B[i+ 1]) in B—excepting the first and the last pairs, the
respective points B[i] and B[i+ 1] represent the end of a bridge and the start of the next bridge in
πinf
(p,q) (Step 1); they also represent the same two bridges in πsup

(p,q) in reverse order (Step 1). The first

pair has p and the start point of the first bridge, and the last pair has the end point of the last bridge
and q. This is used to find the extremum SIPs in the do-while loop of Find-FSIP (Steps 1–1).

Step 1 of Find-FSIP uses the procedure Find-Region to compute the isothetic convex polygons
bounded by the extremum SIPs (Theorem 3). It also finds the Z-bridges. While traversing the
vertices of πinf

(p,q) and πsup
(p,q) in succession, it identifies the overlapping line segments of πinf

(p,q) and

πsup
(p,q), which correspond to Z-bridges.

A U-bridge appearing after a isothetic convex polygon is appended by the procedure Append-
Bridge, in the set F(p,q) (Step 1). The first entry in B is p. So, the first U-bridge, B1, will appear
after the first region, R1. The last entry in B is q. Thus, at the last iteration of the do-while loop
of Find-FSIP, there will be no U-bridge after the last isothetic convex polygon in the sequence, i.e.,
Steps 1–1 will not be executed. Otherwise, the U-bridge after the isothetic convex polygon, generated
in Step 1, is appended by the procedure Append-Bridge in Step 1. If the U-bridge consists of more
than two type 3 vertices, then all the vertices belonging to the U-bridge are appended in F(p,q) by
Append-Bridge. The pointer gets incremented by two, and so it points to the end vertex of the
last U-bridge (Step 1).

In the procedure Find-U-Bridges, the point c1 is determined as the corner point of R(p,q),

11



Procedure Find-U-Bridges(p, q)

c1 ← Rect(p, q)
if xc1 = xp then

My ← SearchVert(p, c1, Ly), Mx ← SearchHorz(c1, q, Lx)

else
Mx ← SearchHorz(p, c1, Lx), My ← SearchVert(c1, q, Ly)

M ← Remove-Points(My ,Mx, p, q)
C(p,q) ← Find-Polychain(M,p, q)
i← 1, j ← 1, B[0]← p
while C(p,q)[i] 6= q do

if type[C(p,q)[i]] = 3 ∧ type[C(p,q)[i+ 1]] = 3 then
B[j]← C(p,q)[i]
i← i+ 1, j ← j + 1
while type[C(p,q)[i+ 1]] = 3 do

i← i+ 1

B[j]← C(p,q)[i]
j ← j + 1

i← i+ 1

B[j]← q
return B

which appears in the anticlockwise traversal of R(p,q) from p to q (Step 2). R(p,q) intersects P at
different points. These intersection points on pc1 and c1q are determined in Step 2 or in Step 2,
depending on the location of c1 in R(p,q). In Step 2, the procedure Remove-Points is used to
remove some of the intersection points based on some combinatorial rules discussed in [28]. The
vertices of P are indexed in increasing order, starting from p. If there are two consecutive vertices of
type 13 (31) in the list of intersection points, then the vertex with greater (lower) index is discarded,
since the line segment joining these two intersection points lies entirely outside P . For example, in
Fig. 2.8, the vertices w1, w2, w3, w4 are the four intersection points, with type(w1, w2) = 31 and
type(w3, w4) = 13. According to the aforesaid rules, here w1 and w4 are discarded. After applying
this rule, all intersection points are considered in pair. The indices of pairs of intersection points are
then checked to find whether they are in increasing or in decreasing order and whether the index
falls within the indices of extreme two points in M , namely M [1] and M [k], where k is the total
number of intersection points. If it is not so, then the last point of first pair and the first point
of next pair are discarded. Now, M contains only the intersection points such that its traversal
produces movements along the borders of R(p,q) and P alternately. That is, if M [i] to M [i + 1]
describes a segment on the border of R(p,q), then M [i + 1] to M [i + 2] indicates a sequence of
vertices along the boundary of P . The latter sequence may be reduced by using combinatorial rules
(Procedure Apply-Rule in [28]) to get a tight polychain from M [i+ 1] to M [i+ 2], if the sequence
creates a convexity. Let M = 〈p, w1, w2, . . . wk, q〉. Then (p, w1) is traversed along R(p,q), (w1, w2)
along P , (w2, w3) along R(p,q), (w3, w4) along P , and so on. During traversal along P , when the
polychain C(p,q) enters a convex region, then it is reduced and made to pass along the open side
of the convex region (Fig. 2.3(left)). If there are one or more concavities inside the convex region,
then though the reduced polychain passes along the open side (i.e., along the line of concavity which
is nearest to the convexity line), it would store the two concave vertices of the nearest concavity
(Fig. 2.3(right)).

Once the polychain C(p,q) is obtained, U-bridges are extracted from it (Find-U-Bridges: Steps 2–
2). i and j are initialized to ‘1’, and p is appended in B (Step 2). The two endpoints corresponding
to each U-bridge are stored in B in sequence by traversing C(p,q). Whenever there are two or more
consecutive vertices of type 3 in C(p,q) (Steps 2-2), then the two extreme type 3 vertices of the
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Procedure Find-Extremum(r, s)

c← Rect(r, s)
My ← SearchVert(r, c, Ly)
Mx ← SearchHorz(c, s, Lx)
M ← Remove-Points(My ,Mx, r, s)
i← 1,m← 1, π[0]← r
while M [i] 6= s do

π[m]←M [i]
if M [i] = c then

i← i+ 1,m← m+ 1
π[m]←M [i]
if type[π[m− 2]] = 1 ∧ type[π[m− 1]] = 1 then

Apply-Rule(π[m− 2], π[m− 1])

if M [i] = s then
continue

Traverse(M [i],M [i+ 1], π,m)
π[m+ 1]←M [i+ 1]
i← i+ 2,m← m+ 2

π[m]← s
return π

sequence are stored in B as the endpoints of the particular bridge. At the end of B, q is appended
(Step 2), and finally B is returned in Step 2.

The procedure Find-Extremum is applied on each pair of points in B to find the isothetic
convex polygon between every two consecutive bridges, which becomes a part of F(p,q) (Theorem 3).
The first four lines of Find-Extremum are similar to those in Find-U-Bridges. The extremum
SIPs obtained at the two sides of a U-bridge are monotone (Theorem 3). The list of intersection
points, M , is traversed and each extremum SIP moves alternately along the sides of R(p,q) and along
the boundary of P (Steps 3–3). Initially, i and m (indices for M and π respectively) are initialized
to ‘1’, and p is appended in π (Step 3). The first movement is along the side of R(p,q); so, the first
intersection point is appended in π (Step 3). If there is a corner point, then the corner point and the
intersection point next to it are appended in π, and reduction rules are applied (by Apply-Rule)
if a convex region is created (Steps 3–3). The loop terminates on reaching the destination point
(Steps 3–3).

The second movement is along the boundary of P between the two intersection points by the
procedure Traverse (Step 3). The SIP moves along the boundary of P , and if it enters any convex
region, then corresponding reduction rules are applied. The next intersection point is appended in
π in Step 3. The variables i and m are incremented by 2 in Step 3, q is appended at the end of π
in Step 3, and π is returned by the procedure in Step 3.

2.4.1 Demonstration

Figure 2.9 shows a demonstration of Algorithm 1. Two points p and q, and their corresponding
rectangle, R(p,q), are shown in Fig. 2.9(top-left). First, C(p,q) is determined using Find-Polychain
(Fig. 2.9: top-middle). From C(p,q), U-bridges are detected. Here, two U-bridges are there, u1 and
u2 being the endpoints of the first U-bridge, and u3 and u6 of the second (Fig. 2.9: top-right). Two
extremum SIPs are obtained from p to u1, which are shown in red (infimum) and in blue (supremum).

The procedure Find-Region extracts the Z-bridge z1z2 from the corresponding region and then
the U-bridge u1u2 is appended. So, up to this point, F(p,q) = R1∪z1z2∪R2∪u1u2 (Fig. 2.9: bottom-
left). Next, the two extremum SIPs between u2 and u3 are determined (Fig. 2.9: bottom-middle).
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Figure 2.9: A demonstration of computing F(p,q) by Find-FSIP.

The corresponding region does not contain any Z-bridge, and F(p,q) = R1 ∪ z1z2 ∪ R2 ∪ u1u2 ∪ R3

is obtained. The next U-bridge consists of more than two vertices of type 3. All the segments
between the two extreme points of the U-bridge are appended, and so F(p,q) gets enhanced to
R1∪z1z2∪R2∪u1u2∪R3∪u3u4∪u4u5∪u5u6. The concluding portions of the extremum SIPs between
u6 and q are obtained in a similar manner (Fig. 2.9: bottom-right). There is no more U-bridge, since
q is the destination. Hence, finally, F(p,q) = R1 ∪ z1z2 ∪R2 ∪ u1u2 ∪R3 ∪ u3u4 ∪ u4u5 ∪ u5u6 ∪R4.

2.4.2 Time Complexity

The inner isothetic cover P , which tightly inscribes the object A, is obtained as an ordered sequence
of n grid points (vertices and edge points) and stored in L. This needs O(ng) time, since the
intersection of each grid edge with A is checked in O(g) time and the number of grid points visited
is bounded by Θ(n). Note that ng is linear in the number of pixels constituting the contour of
A. Subsequently, the lists Lx and Ly are constructed from L in O(n log n) time. Thus, the total
preprocessing time before applying Find-FSIP algorithm is O(n log n).
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The algorithm Find-FSIP finds the U-bridges from the intersection points between P and R(p,q),
which are less in number than the grid points comprising the border of P . To find the intersection
points, Lx and Ly are accessed (Find-U-Bridges: Steps 2–2). To find the positions of p, q, and c1
in these lists, binary search is applied, which takes O(log n) time in total. Other intersection points
lie consecutively from p to c1 in Ly, and from c1 to q in Lx, and hence obtained by appropriate linear
search in O(n) time. The procedure Remove-Points discards some of the intersection points from
My and Mx based on combinatorial rules, which takes O(k) time, where k(< n) is the number of
intersection points. Note that g times k does not exceed the semi-perimeter of R(p,q).

The procedure Find-Polychain computes the polychain C(p,q) by traversing along (the borders
of) R(p,q) and P . Traversal along R(p,q) is done to add intersection points in C(p,q), which requires
O(k) time. Traversal along P—from one intersection point to the next—yields all the vertices of P
lying among the intersection points. These vertices are added linearly in C(p,q) in a maximum O(n)
time. During the traversal along P , reduction rules are applied by Apply-Rule on the corresponding
parts of C(p,q). The total time complexity for this is linear in the number of vertices of C(p,q), which
is at most O(n). Hence, all U-bridges are computed and added in the FSIP in O(n) time in the
worst case.

The time taken by Find-Extremum is upper-bounded by the maximum possible length of an
extremum SIP, which is O(n). The procedure Find-Region extracts the isothetic convex polygons
and the Z-bridges by traversing πinf

(p,q) and πsup
(p,q). As explained in Sec. 2.4, the Z-bridges are obtained

from the overlapping line segments in πinf
(p,q) and πsup

(p,q), using a linear pass on each, which needs

O(n) time in worst case. The Append-Bridge procedure adds the isothetic convex polygons and
the bridges in F(p,q), which also takes O(n) time in worst case. Thus, the total worst-case time
complexity to compute the FSIP is O(n).

2.5 Experimental Results

The proposed algorithm is implemented in C in Ubuntu 10.4, Kernel version 2.6.32-21-generic, Dual
Intel Xeon Processor 2.8 GHz, 800 MHz FSB. It is tested on several datasets containing various
digital images of different shapes and forms. As an example, the resultant FSIP between two given
points in octopus image is shown in Fig. 2.10. Notice that this FSIP consists of three U-bridges
and four simple convex isothetic polygons, and so, β = 3 and α = 4. Using this information, FSIPs
can be used for shape analysis of digital objects, as discussed next.

2.5.1 FSIP for Shape Analysis

An FSIP encompasses all the shortest isothetic paths for a given pair of points. For different pair of
points, FSIPs would be different. All these FSIPs can be used together to analyze the shape of the
corresponding object. For example, the region of intersection of different FSIPs for different pairs of
control points may provide some crucial information about the object shape. In this experimentation,
these control points are selected manually. The FSIPs corresponding to all these pairs of control
points have varying overlaps. The number of FSIPs overlapped in a particular region signifies its
centrality measure, from which a critical region can be determined. However, the selection of control
points is an important task here, which remains open for further exploration.

Figure 2.11 illustrates some critical regions generated by this algorithm on the image guitarist.
In Fig. 2.11(top-right), there are six control points with

(
6
2

)
= 15 FSIPs. The lower part of the left

hand (holding the guitar) of the guitarist is reported as the critical region (shown in red), since a
maximum number of eight FSIPs overlap there. Four of these eight FSIPs are from the point at the
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Figure 2.10: FSIP for a pair of points in the image octopus.

bottom of the guitar, and remaining four from the point at the top of the guitar—both sets leading
to points in head, hand, and two legs. When one point is disregarded (say, the bottom point in the
guitar), there arise two critical regions with five control points, as shown in Fig. 2.11(bottom-left).
In the critical region shown in red, there are four overlapping FSIPs: two from guitar top to hand
and right leg, and two from head to hand and right leg. In the other critical region shown in indigo
blue, there are also four such overlapping FSIPs: two from guitar top to hand and right leg, and two
from hand and head to left leg. So, it is the “guitar” here that changes the critical region. When
there is no control point inside the “guitar”, then the position of the critical region remains in the
“body”, as shown with four control points in Fig. 2.11(bottom-right). The result in this case has
six critical regions, which are shown in red, indigo blue, olive green, pink, purple, and sea green.

The critical region, C, in Fig. 2.11(top-right) forms the “bridge” between families (or parts of
families) lying left of C and those lying right of C. This is a typicality of guitarist image and may
not always arise. However, if it arises, then it would give a meaningful partition of the digital shape.
Another example on the image dance is shown in Fig. 2.12. In this image, the critical region is at
the gripping hands. A critical region, however, may not always straightway provide a meaningful
partition. For example, in Fig. 2.13, the critical region (red) varies for different poses of the tennis
player, and so it cannot partition the tennis bat from the tennis player. However, it is interesting
to notice that in each of these poses, the critical region lies near the waist at the side of the hand
holding the bat.

FSIP can be applied for shape analysis. Choosing of control points in a digital object is important.
If proper control points are determined, then FSIP between two points will give some important
information regarding the shape of the object. The convexity index of a FSIP gives a measure on
the complexity of the object. The overlapping portions of multiple FSIP gives critical region.

The data of FSIPs generated for three images, i.e., guitarist, dance, and tennis set, are
tabulated in Tables 2.1, 2.2, and 2.3. The source and the destination points are given in the first
column of each table. The second column contains the ideal (Manhattan) distance ‖pq‖1 between
p and q, whereas the third column contains the length of a SIP between them, which is denoted
by ‖π(p,q)‖. The path complexity of a SIP (and its FSIP, thereof) is estimated as the percentage of
‖pq‖1 w.r.t. ‖π(p,q)‖. The rationale is, as a SIP deviates more and more from the sides of R(p,q), its
complexity goes on increasing. This complexity can be used to capture the shape of the object part
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Figure 2.11: Results on guitarist (top-left) image for varying control points (shown as red dots).
FSIPs with six points (top-right), five points (bottom-left), and four points (bottom-right).

lying between the concerned points. In combination with FSIP complexity, the number of U-bridges
can also be used to estimate the shape complexity. For, a long SIP may not always signify a complex
shape. As an example, in guitarist image, the point lying at top of the guitar and that in the right
leg are furthest (depicted in Table 2.1), but the corresponding FSIP is monotone. On the contrary,
the path length between the top of the guitar and the head of the guitarist is although less, the
FSIP is more complex with two U-bridges. Again, the FSIP between the bottom of the guitar and
the head has maximum number (three) of U-bridges, but a path in this FSIP is less complex if it is
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Figure 2.12: FSIPs and the resultant critical region (black) for dance image.

considered merely the complexity estimate of the FSIP.
In dance image, the FSIP with maximum path complexity is from the man’s left leg to the girl’s

right leg (Table 2.2), but it consists of three U-bridges. The FSIP from man’s left leg to girl’s left
leg has maximum number (four) of U-bridges. The FSIPs from man’s head to man’s hand and left
leg, girl’s head to girl’s right leg, and girl’s hand to girl’s right leg are all monotone. Monotone
FSIP implies freedom of movement, whereas the presence of a Z-bridge or a U-bridge restricts this
freedom. Presence of U-bridges makes a SIP non-monotone, whereas Z-bridges do not break the
monotonicity. So, bridges carry a strong signature for the analysis of shape of an object.

The FSIP characteristics for two images of tennis set (Fig. 2.13) are provided in Table 2.3.
Different poses give rise to different path complexities for the same pair of points, since the nature
and the orientation of the concavities change with these poses. Between bat and left leg in the
tennis set, some poses have monotone FSIPs and some have non-monotone. But, between right leg
and left leg, the FSIPs are non-monotone for all the four poses. For Pose 1 tabulated in Table 2.3,
there is more than one U-bridge, whereas for each other pose, there is one or none.
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Figure 2.13: FSIPs on tennis image set.
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Table 2.1: FSIP characteristics for guitarist image. p and q are the points in the image;
‖pq‖1 = Manhattan distance between p and q; ‖π(p,q)‖ = length of a SIP between p and q;
κ = complexity of F(p,q); βU = number of U-bridges in ‖π(p,q)‖; α = convexity index of F(p,q).
(GTop = point at guitar top; GBtm = point at guitar bottom; Head = point at head; Hand =
point at hand; LLeg = point at left leg; RLeg = point at right leg.)

p, q ‖pq‖1 ‖π(p,q)‖ κ βU α

GTop, GBtm 584 584 0 0 1
GTop, Head 360 1160 222.22 2 3
GTop, Hand 1160 1160 0 0 1
GTop, RLeg 1608 1608 0 0 1
GTop, LLeg 1160 1400 20.69 1 2
GBtm, Head 720 1312 82.22 3 4
GBtm, Hand 608 1312 115.79 1 2
GBtmp, RLeg 1024 1760 71.88 1 2
GBtm, LLeg 576 1552 169.44 2 3
Head, Hand 800 800 0 0 1
Head, RLeg 1248 1248 0 0 1
Head, LLeg 1072 1232 14.92 1 2
Hand, RLeg 528 1120 112.12 2 3
Hand, LLeg 960 1168 21.67 1 2
RLeg, LLeg 448 1298 189.73 1 2
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Table 2.2: FSIP characteristics for dance image. (MHead = point at man’s head; MHand = point
at man’s hand; MRLeg = point at man’s right leg; MLLeg = point at man’s left leg; GHead =
point at girl’s head; GHand = point at girl’s hand; GRLeg = point at girl’s right leg; GLLeg =
point at girl’s left leg.)

p, q ‖pq‖1 ‖π(p,q)‖ κ βU α

MHead, MHand 584 584 0 0 1
MHead, MRLeg 720 784 8.89 1 2
MHead, MLLeg 944 944 0 0 1
MHead, GHead 480 816 70.00 3 4
MHead, GHand 664 1000 50.60 3 4
MHead, GLLeg 904 1304 44.25 4 5
MHead, GRLeg 1104 1264 14.49 3 4
MHand, MRLeg 328 760 131.71 2 3
MHand, MLLeg 552 920 66.67 1 2
MHand, GHead 984 1080 9.76 2 3
MHand, GHand 1168 1264 8.22 2 3
MHand, GLLeg 512 1568 206.25 3 4
MHand, GRLeg 712 1264 8.45 2 3
MRLeg, MLLeg 256 800 212.50 1 2
MRLeg, GHead 1136 1232 8.45 2 3
MRLeg, GHand 1168 1264 7.27 2 3
MRLeg, GLLeg 512 1568 277.19 3 4
MRLeg, GRLeg 712 1264 303.85 2 3
MLLeg, GHead 880 1296 47.27 3 4
MLLeg, GHand 1064 1480 39.10 3 4
MLLeg, GLLeg 200 1784 792.00 4 5
MLLeg, GRLeg 160 1744 990.00 3 4
GHead, GHand 184 360 95.65 1 2
GHead, GLLeg 680 776 14.12 1 2
GHead, GRLeg 792 792 0 0 1
GHand, GLLeg 864 960 14.12 1 2
GHand, GRLeg 904 904 0 0 1
GLLeg, GRLeg 200 728 264 3 4
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Table 2.3: FSIP characteristics for tennis image. (Bat = point at Bat; Head = point at head;
Hand = point at hand; LLeg = point at left leg; RLeg = point at right leg.)

Pose 1 (Fig. 2.13: top-left)

p, q ‖pq‖1 ‖π(p,q)‖ κ βU α

Bat, Head 750 1150 53.33 1 2
Bat, Hand 1420 1580 11.27 1 2
Batp, RLeg 1750 2010 14.86 1 2
Bat, LLeg 2260 2260 0 0 1
Head, Hand 670 690 2.98 1 2
Head, RLeg 1200 1260 5.00 1 2
Head, LLeg 1510 1510 0 0 1
Hand, RLeg 1630 1630 0 0 1
Hand, LLeg 1160 1480 27.59 1 2
RLeg, LLeg 510 1550 203.92 1 2

Pose 2 (Fig. 2.13: top-right)

p, q ‖pq‖1 ‖π(p,q)‖ κ βU α

Bat, Head 1010 1390 37.62 1 2
Bat, Hand 1200 1700 41.67 2 3
Batp, RLeg 1580 2020 27.85 3 4
Bat, LLeg 2130 2430 14.08 2 3
Head, Hand 850 850 0 0 1
Head, RLeg 1230 1370 11.38 1 2
Head, LLeg 1780 1780 0 0 1
Hand, RLeg 380 1520 300.00 1 2
Hand, LLeg 930 1530 64.52 1 2
RLeg, LLeg 550 1590 189.09 1 2
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Chapter 3

A Combinatorial Technique for
Construction of Triangular Covers
of Digital Objects

1Das, B., M. Dutt, A. Biswas, P. Bhowmick, and B. B. Bhattacharya (2014). A Combinatorial
Technique for Construction of Triangular Covers of Digital Objects. In: 16th International Workshop
on Combinatorial Image Analysis: IWCIA’14. Vol. 8466. Brno, Czech Republic: LNCS, pp.76-90.

3.1 Introduction

Optimal polygonal covers of digital objects find diverse applications in many fields of image analysis
and computer vision. Such covers are often obtained with a certain approximation parameter or
with respect to an underlying grid that determines their precision. The grid is usually defined or
characterized by the type of its constituent cells, which may be axis-parallel squares [8], equilateral
triangles [21], or isosceles right-angled triangles [58]. Whether polygonal covers can efficiently be
generated in low-order polynomial time for different grid patterns is a challenging problem, and
this chapter is focused on the specific problem when the cells comprising the underlying grid are
equilateral triangles.

A triangular grid, also called an isometric grid [31], is a grid formed by tiling the plane regularly
with equilateral triangles. Given a triangular grid, the triangular cover of a digital object placed on
the grid corresponds to a collection of equilateral triangles. Such a cover captures the structural and
topological information of the concerned object, and finds useful applications in many fields, such
as digital image processing and image analysis [48], geometric modeling [45], clustering and pattern
analysis [8, 45], ecological simulation [5] etc.

Triangular grids and hexagonal grids are duals of each other [48]. There exists a multitude of
work in digital geometry in the framework of square grids, as well as triangular and hexagonal grids.
Based on algorithmic comparison, it has been shown in [65] that there is a strong degree of similarity
between square grids and hexagonal grids. This is also evidenced from the literature today, as several
interesting works are seen on characterization and construction of geometric primitives on triangular
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Figure 3.1: A digital object (left) and its outer triangular covers (shown in red) for g = 12 (middle)
and g = 14 (right).

and hexagonal grids. Some of these related to digital lines, digital circles, and polygons, may be
found in [30, 35, 47, 51, 57].

The first algorithm for construction of triangular covers of a digital object for different grid
sizes, which is based on certain combinatorial rules, is proposed here. See Fig. 3.1 for triangular
covers produced by this algorithm on a typical digital object for two different grid sizes. Although
there exist similar work in the literature, no definite algorithm is available till date for the aforesaid
problem. For example, the work in [58] is on tiling an image by isosceles right-angled triangles of the
same size. Some investigation was made on analyzing the cellular topology with triangular grids,
e.g., [50], where coordinate triplets are used to address the triangle pixels of both orientations, the
edges between them, and the points at the triangle corners. The main advantage of a topological
description is that it provides more information compared to the usual description, storing not only
the pixels of the two-dimensional image but also the lower dimensional segments, the edges, and the
points separating the pixels. To represent the points of a triangular grid and their neighborhood
relations, coordinate triplets can be used, as shown in [48].

There also exist algorithms to compute the shortest distance between two given points on the
triangular grid [46], as well as on the hexagonal grid [43], based on the distance function and the
neighboring relations. In [49], it has been shown how distance computation can be done first with
neighborhood sequence in 3D digital space and then by injection of the triangular grid to the cubic
grid. For computing isoperimetrically optimal polygons in the triangular grid with Jordan-type
neighborhood on the boundary, a method has been proposed in [51].

Some results on tiling in triangular grid have also been reported in recent time. There is no
polynomial-time algorithm to solve the finite tiling problem. So, an attempt has been made in [59]
to solve the problem using group theory. Such group-theoretic approaches for tiling a given finite
region using polyominoes from triangular, square, or hexagonal lattices can be traced back to 1990’s
[20]. In [33], regular production systems are used as a tool for analyzing triangle tilings. In [4],
a solution has been provided for the problem of N -tiling of a triangle ABC by a triangle T (tile)
such that ABC can be represented as the union of N triangles congruent to T , overlapping only at
their boundaries. In [39], a technique has been proposed for regular and irregular tiling of convex
polygons with congruent triangles. Another technique proposed in [12] shows how to compute the
locations of the vertices of a polygon, so that it can be perfectly tiled by lattice triangles. Tiling
has also been implemented with other techniques such as using trichromatic colored-edged triangles,
Golden Triangles, and Penrose Rhombs [11, 19].

For construction of optimum-area outer and inner covers of a digital object against a given

24



isothetic or a square grid, an algorithm is proposed in [8]. The algorithm proposed here for the
triangular grid is essentially different from the one in [8] mainly for three reasons. First, the com-
binatorial cases on the triangular grid are different from those on the square grid. Second, the grid
lines are non-rectilinear in a triangular grid, thus posing a higher level of difficulty compared to
the square grid. Third, all the computations in the square grid can be restricted to integers only
by setting the grid size to an integer value, whereas, the computations are in real domain in the
case of triangular grid. Note that triangular mesh has also wide applications in the area of surface
representation and construction. However, efficient computation of the tightest cover of a digital
object on a triangular grid remains an open problem.

The chapter is organized as follows. Definitions related to the triangular cover are stated in
Sec. 3.2. Combinatorial rules that lead to the covering algorithm, with necessary explanations and
runtime complexity, are discussed in Sec. 3.3. Experimental results on some datasets are presented
in Sec. 5.5.

3.2 Definitions

A (digital) object is a finite subset of Z2 consisting of one or more k(= 4 or 8)-connected components
[38]. Here, the considered object is a single 8-connected component. A triangular grid (henceforth
simply referred as grid) T := (L0,L60,L120) consists of three sets of parallel grid lines, which are
inclined at 00, 600, and 1200 w.r.t. x-axis. The grid lines in L0,L60,L120 correspond to three
distinct coordinates, namely α, β, γ. Three grid lines, one each from L0, L60, and L120, intersect
at a (real) grid point. The distance between two consecutive grid points along a grid line is termed
as grid size, g. A line segment of length g connecting two consecutive grid points on a grid line
is called grid edge. The smallest-area triangle formed by three grid edges, one each from L0, L60,
and L120, is called unit grid triangle (UGT). A portion of the triangular grid is shown in Fig. 3.2.
It has six distinct regions called sextants, each of which is well-defined by two rays starting from
(0, 0, 0). For example, Sextant 1 is defined by the region lying between {β = γ = 0, α ≥ 0} and
{α = γ = 0, β ≥ 0}. One of α, β, γ is always 0 in a sextant. For example, γ = 0 in Sextant 1 and
Sextant 4.

For a given grid point, p, there are six neighboring UGTs, given by {Ti : i = 0, 1, . . . , 5}. The
three coordinates of p are given by the corresponding moves along a/the shortest path from (0, 0, 0)
to p, measured in grid unit. For example, (1, 2, 0) means a unit move along 00 followed by two unit
moves along 600, starting from (0, 0, 0). The grid point p can have six neighbor grid points, whose
direction codes are given by {d′ : i = 0, 1, . . . , 5}.

A (finite) polygon P imposed on the grid T is termed as a triangular polygon if its sides are
collinear with lines in L0, L60, and L120. It consists of a set of UGTs, and is represented by the
(ordered) sequence of its vertices, which are grid points. It can also be represented by a sequence of
directions and a start vertex. Its interior is defined as the set of points with integer coordinates lying
inside it. An outer triangular polygon is the minimum-area triangular polygon that tightly covers
the digital object A in T. Each UGT having at least one of its sides on the boundary of the outer
polygon has object occupancy. An outer triangular hole polygon is the maximum-area triangular
polygon that inscribes a hole or a concavity of A; that is, A lies outside the outer triangular hole
polygon. The outer triangular cover (OTC), P , is the set of outer triangular polygons and outer
triangular hole polygons, such that the region given by the union of the outer triangular polygons
minus the union of the interiors of the outer triangular hole polygons, contains a UGT if and only
if it has object occupancy. The inner triangular cover (ITC), P , is the set of inner polygons and
inner hole polygons, such that the region given by the union of the inner polygons minus the union
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Figure 3.2: Portion of a triangular grid, the UGTs {T0, T1, . . . , T5} incident at a grid point p, and
the direction codes {0, 1, . . . , 5} of neighboring grid points of p.

of the interiors of the inner hole polygons, contains a UGT if and only if it is a subset of A.
Hence, the OTC of an object consists of minimum number of UGTs and its ITC consists of

maximum number of UGTs. As a consequence, given an object A and a grid imposed on A, the
OTC and ITC are, respectively, of minimum and of maximum areas measured in the grid unit.

3.3 Obtaining outer triangular cover

While obtaining the triangular cover P of A, this algorithm traverses the boundary of P with the
invariant that A always lies left w.r.t. the direction of traversal. The top-left pixel on the boundary
of the object, p0, is given as input, from which the start vertex q0 of P is computed, as shown in
Fig. 3.3. If A contains any hole, then the top-left pixel of the hole boundary is also given as input.
However, if the object contains a large concave region with ‘narrow mouth’, then the hole polygon
inscribing that concave region is detected and traversed later from a UGT containing the border of
the narrow mouth.

3.3.1 Classification of vertices

The object occupancy vector corresponding to 〈Ti : i = 0, 1, . . . , 5〉 incident at a grid point q is given
by Aq = 〈a0a1 · · · a5〉, where, for i = 0, 1, . . . , 5, ai = 1 if Ti incident at q has object occupancy,
and 0 otherwise. The object occupancy of each Ti is determined by checking its interior integer
points lying along its borders. The algorithm then uses the vector Aq to determine whether q lies
on P and to compute the edges of P incident at q. For example, Aq = 000011 implies T4 and T5

26



q0 q0q0T0

T1
T2

T3
T4

T5

T0

T1
T2

T3
T4

T5

T0

T1
T2

T3
T4

T5

Figure 3.3: Determining the start vertex, q0, from the top-left object pixel, p0, which would lie either
in T4 (left or middle configuration) or in T5 (middle or right). Object-occupied UGTs are shown in
gray, and start directions in red.

are object-occupied. So, the direction of the incoming edge at q becomes 3 and that of the outgoing
edge becomes 5, since the object lies left during traversal of P .

A grid point q lies on P if Aq contains both 0’s and 1’s. If Aq = 06, then q lies outside P
(Fig. 3.4a); and Aq = 16 implies q lies strictly inside P (Fig. 3.4l). Apart from these two cases, there
arise 26 − 2 = 62 combinatorial cases of Aq. These 62 cases can be simplified to following 5 cases
only, with their corresponding sub-cases (Fig. 3.4b-k), depending on the number of 1’s in Aq, which
is denoted by k(= 1, 2, . . . , 5).

• k = 1 : There are 6 sub-cases depending on the position of 1-bit in Aq. For each sub-case, the
angle at q is π/3 (Fig. 3.4b). If ai = 1, then the direction pair representing the incoming and the
outgoing edges at q is ((i+ 4) mod 6, i).

• k = 2 : Let ai = aj = 1. If j = (i + 1) mod 6, then there are 6 sub-cases, each with angle
at q as 2π/3 and direction pair ((i + 5) mod 6, i), as shown in Fig. 3.4c. Otherwise, there are 9
sub-cases, each with q occurring twice in P—once (as a vertex or a non-vertex edge point) on the
outer triangular polygon, and once on a triangular hole polygon (Fig. 3.4d).

• k = 3 : Following are three possibilities.

• The positions of three 1-bits in Aq are i, (i+1) mod 6, and (i+2) mod 6. There are 6 sub-cases
in which q is not a vertex but a grid point on an edge of P , and with direction pair (i, i); see
Fig. 3.4e.

• Two 1-bits have positions i and (i+ 1) mod 6, and the third 1-bit in any position j other than
(i + 2) mod 6. There are 12 sub-cases, each with q occurring twice in P—once as a vertex of
the outer triangular polygon, and once as a vertex of a triangular hole polygon (Fig. 3.4f).

• All three 1-bits in Aq are non-consecutive. There are 2 sub-cases, each with q occurring thrice
in P—once as a vertex of the outer triangular polygon, and twice as vertices of two triangular
hole polygons (Fig. 3.4g).

• k = 4 : There are three possibilities as follows.

• The positions of four 1-bits in Aq are (i + j) mod 6, for j = 0, 1, 2, 3 (Fig. 3.4h). There are 6
sub-cases, each with angle at q as 4π/3 and direction pair ((i+ 7) mod 6, i).

• The positions of two 1-bits are i and (i + 1) mod 6, and those of the other two 1-bits are j
and (j + 1) mod 6, where j = (i + 3) mod 6 (Fig. 3.4i). There are 3 sub-cases, each with q
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Figure 3.4: Classification of a grid point q for (a) k = 0, (b) k = 1, (c, d) k = 2, (e-g) k = 3, (h-
j) k = 4, (k) k = 5, (l) k = 6. A red line indicates the traversal direction of the outer triangular
polygon, and a blue line indicates that of an outer triangular hole polygon. Detailed explanations
are given in Sec. 3.3.1.

occurring twice in P—once as a vertex of the outer triangular polygon, and once as a vertex
of a triangular hole polygon.

• The positions of three 1-bits are i, (i+ 1) mod 6, and (i+ 2) mod 6, and that of the fourth 1-bit
is (i+ 4) mod 6 (Fig. 3.4j). There are 6 sub-cases, each with q occurring twice in P , as in the
previous case.

• k = 5 : There are 6 sub-cases depending on the position of 0-bit in Aq (Fig. 3.4k). For each
sub-case, the angle at q is 5π/3. If ai = 0, then the direction pair representing the incoming and
the outgoing edges at q is ((i+ 3) mod 6, (i+ 1) mod 6).

3.3.2 Determining the next direction

The outgoing direction d′ at a grid point q lying on P is computed from the incoming direction d and
Aq := 〈a0a1 · · · a5〉. It is based on the following observation: The incoming direction d implies aj = 1
and a(j+1)mod 6 = 0, where j = (d + 2) mod 6. Hence, j is incremented (in modulo 6 arithmetic)
until the next 1-bit in Aq is encountered, say at j′, so that aj′ = 1. The outgoing direction is then
given by d′ = j′. For example, in Fig. 3.4f, Aq = 110010 and d = 5 gives j = (5 + 2) mod 6 = 1,
implying a1 = 1 and a2 = 0; since a3 = 0 and a4 = 1, d′ = 4 is obtained for the outer triangular
polygon. While traversing the hole polygon in Fig. 3.4f, d = 2 gives j = (2 + 2) mod 6 = 4, implying
a4 = 1 and a5 = 0; since a0 = 1, d′ = 0 is obtained.
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Algorithm 4: Construct-OTC
Input : A,T, p0
Output: L
q ← q0 ← Find-Start(p0)
L← {q0}
d← Find-Start-Dir(q0)
do

d′ ← Find-Dir(d, q)
q ← Next-Vert(d′, q)
d← d′

L← L ∪ {q}
while q 6= q0 ;
return L

3.3.3 Algorithm to construct P

Algorithm 4 (Construct-OTC) shows the important steps to construct the outer triangular poly-
gon of a digital object (single connected component without holes). It takes the object, A, the
triangular grid, T, and the top-left pixel of p0 ∈ A, as input, and generates the sequence of vertices
of P as output. The same algorithm is also used to construct the other polygons, e.g., outer trian-
gular hole polygons and also other outer triangular polygons in case of a digital object with multiple
components. For each component or each hole, the top-left pixel is supplied as an input.

In Step 4 of the algorithm, the top-left grid point (start vertex) of P , namely q0, is determined
from p0 using the procedure Find-Start. Its related details have already been explained in Sec. 3.3.
The list L stores the sequence of vertices of P . It is initialized with q0 in Step 4. In Step 4, the
start direction is determined based on the UGT containing p0, as explained earlier and illustrated
in Fig. 3.3. In the do-while loop (Steps 4–4), the outgoing direction d′ and the next vertex are
determined, until the next vertex coincides with the start vertex.

The outgoing direction d′ at q is determined by the procedure Find-Dir in Step 4. Its related
operations are explained in Sec. 3.3.2. From d′, the next vertex is easily computed by Next-Vert
in Step 4, using T and the coordinates of q. The ordered list of vertices, L, is returned finally in
Step 4.

The inner cover, P , can be constructed by the method of generating P , but in the reverse manner.
A grid point q ∈ A is classified as a vertex of P , if and only if at least one of the six UGTs incident
at q is fully occupied by the object A i.e., T q

i

⋂
A = T q

i where i ∈ {0, 1, 2, 3, 4, 5}.

3.3.4 Correctness and time complexity

From the combinatorial cases explained in Sec. 3.3.1 and from the strategy of getting outgoing
directions explained in Sec. 3.3.2, the following observation can be proposed: For every grid edge e
lying on P , one UGT incident on e has object-occupancy and the other has not. Further, among these
two UGTs, the interior of only the former lies inside P . This implies that none of the UGTs whose
edges lie on P and interiors lie inside P , can be removed from P , which proves the minimum-area
criterion of P produced by Algorithm 4.

To prove that the start vertex q0 is finally reached when the algorithm terminates, observe that
the algorithm maintains the invariant that the object A always lies left during traversal. Since the
incoming direction is left out while commencing the start direction from q0, the outgoing direction
from the last grid point on P finally leads to q0, hence ensuring its successful termination.

For time complexity analysis, let n be the number of pixels comprising the contour (border) of a
connected component comprising A. A UGT may contain as few as one contour pixel, but for every
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seven UGTs through which the contour passes in succession, there would be at least O(g) contour
pixels, as g is the grid size of T. Hence, there are at most O(n/g) UGTs containing the object
contour, or, the number of grid points on P is at most O(n/g).

To find the start vertex q0 and the corresponding start direction, O(1) time is required. So,
Steps 4–4 of Algorithm 4 takes O(1) time. Each UGT is checked in O(g) time, as explained in
Sec. 3.3.1. As each grid point has six neighboring UGTs, the time complexity to compute the object
occupancy vector at each grid point q lying on P is 6 ·O(g) = O(g). Thus, for q, outgoing direction
and next grid point finding are performed in O(g) time. Hence, the worst-case time complexity of
Algorithm 4 is O(n/g) ·O(g) = O(n).

For the best-case analysis, observe that there can be O(g2) contour pixels in a UGT, which implies
that there can be O(n/g2) UGTs containing the object contour, or, the number of grid points on P
is O(n/g2). As each UGT can be checked for object occupancy in O(g) time, The time complexity
is O(n/g2) ·O(g) = O(n/g).

3.4 Experimental results

The proposed algorithm is implemented in C in Ubuntu 12.04, 32-bit, kernel version 3.5.0-43-generic,
the processor being Intel core i5-3570, 3.40GHz FSB. The algorithm has been used to construct
triangular covers of digital objects in various binary images of logo datasets, real-world objects, and
geometric shapes, for different grid sizes.

The outer triangular covers (OTCs) of three different objects are shown in Fig. 3.5. The outer
triangular polygons are shown in red and outer hole polygons in blue. For Lincoln image, there are
five outer hole polygons along with the outer triangular polygon. It may be noticed that there are a
few small holes in the top-left region of the digital object of Lincoln image; however, only one outer
hole polygon in that region is reported by this algorithm, as the other holes are not large enough to
accommodate any polygon for g = 20.

Figure 3.6 shows the outer triangular covers of five objects from the datasets. The second and
the fourth ones are geometric shapes, the third one is a logo image, and the first and the fifth are
real-world objects. In each row, the input object, the number of pixels constituting its border (n),
the OTCs for some grid sizes, and the number of vertices (nv) of the OTCs are shown. The results
indicate that nv decreases with the increase of g. As g decreases, smaller irregularities on the object
border do not leave much impression on P , but the gross shape of the object gets captured through
fewer vertices. The cover P captures the structural property of the object for smaller values of g,
and it loses information with increasing values of g. For higher values of g, output complexity is
low, resulting in less storage, but topological information is not always retained. For example, some
of the outer triangular hole polygons may disappear for higher values of grid size. Such a collection
of P for changing grid size might be useful for multi-scale shape analysis.

Table 3.1 presents a consolidated information of the OTCs for several objects at different grid
sizes. In all cases, the number of vertices decreases with g, which is also evident from the plots
showing nv versus g in Fig. 3.7. The CPU times plotted against different grid sizes for four images
are shown in this figure. As evident from these plots, the CPU time taken to compute the OTCs
falls sharply with the increasing value of g, which indicates that the runtime of the algorithm on
a real-world image follows the best-case runtime complexity of O(n/g), as explained in Sec. 3.3.4.
The results of inner and outer triangular cover on complex objects for various grid sizes are shown
in Fig. 3.9 and Fig. 3.10.

To estimate the effectiveness of triangular covers in capturing the object shape, a comparison of
the proposed algorithm has been done with the algorithm for finding isothetic covers proposed in
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nv = 200

nv = 66 nv = 78

Figure 3.5: Triangular covers produced by the proposed algorithm on Lincoln, dancer, and
aircraft images, with g = 20.

[8]. Figure 3.8 shows this comparison for a geometric shape (Letter T), a logo image (Kangaroo),
and a real-world object (Crane), all for g = 16.

The object in Letter T is perfectly aligned with the horizontal and the vertical lines of the
isothetic grid. Hence, its isothetic cover has fewer vertices compared to its triangular cover; however,
in area measure, the triangular cover is better compared to the isothetic cover. For the image
Kangaroo, the number of vertices of the triangular cover is more than that of the isothetic cover;
but the area of the triangular cover is comparatively less, indicating that it is tighter than the
isothetic cover, and hence more compact. The boundary of the object in Crane has some portions
aligned roughly along the grid lines of the triangular grid, which results in fewer vertices of the
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Baby g = 1 g = 6 g = 12 g = 22
n = 3024 nv = 2976 nv = 243 nv = 129 nv = 71

Pentagon g = 6 g = 12 g = 18 g = 22
n = 1824 nv = 127 nv = 66 nv = 46 nv = 39

Crane g = 8 g = 10 g = 14 g = 20
n = 3178 nv = 187 nv = 143 nv = 97 nv = 82

Letter T g = 4 g = 10 g = 16 g = 22
n = 2100 nv = 600 nv = 108 nv = 88 nv = 50

Bear g = 6 g = 10 g = 14 g = 16
n = 1240 nv = 120 nv = 52 nv = 32 nv = 40

Figure 3.6: Experimental results for different grid sizes. (n = number of pixels on the object contour;
nv = number of vertices of P .)

triangular cover compared to the isothetic cover; and here also, the area measure of the triangular
cover is less than that of the isothetic cover. Thus, the triangular covers are particularly effective,
both in terms of vertex count and area measure, when the object boundary has some alignment
with the underlying grid. An isothetic cover, in general, may have a smaller set of vertices, and so
its computational time may be less. On the other hand, a triangular cover usually requires less area
to encompass the object; and hence, it offers more compactness, although it can have more vertices
and may require more computational time.
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Object Isothetic Cover Triangular Cover

Object Area Perimeter Outer Cover nv Area Perimeter

Letter T 117966 2100
Triangular 88 136014 2320
Isothetic 8 140800 2080

Kangaroo 92292 4926
Triangular 128 113955 3392
Isothetic 114 122112 3392

Crane 101362 2864
Triangular 92 118057 2512
Isothetic 110 123904 2848

Figure 3.8: Comparison of the triangular covers produced by the proposed algorithm with the
isothetic covers produced by the algorithm in [8], all for g = 16. (nv=number of vertices.)
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Object A |A| n g n60 n120 n240 n300 nv nT |P | pP T

Baby 132629 3024

4 45 159 149 47 400 19760 136901 2744 600
8 26 81 69 29 205 5093 141141 2760 410

12 2 68 52 7 129 2350 146531 2568 360
16 4 46 30 9 89 1348 149427 2592 340
20 3 35 21 7 66 887 153633 2540 320
24 2 31 19 5 57 619 154388 2472 310

Pentagon 116711 1636

4 19 81 77 18 195 17185 119061 1516 530
8 10 40 36 9 95 4401 121964 1528 390

12 0 36 30 0 66 2004 124957 1464 360
16 2 26 22 1 51 1152 127701 1504 340
20 3 22 16 3 44 745 129038 1540 330
24 2 18 12 2 34 537 133936 1560 320

Aircraft 50607 2724

4 44 131 123 45 343 7835 54282 2460 520
8 23 75 57 29 184 2086 57809 2496 400

12 5 61 43 11 120 998 62229 2352 350
16 5 46 38 6 95 593 65735 2320 340
20 8 34 28 8 78 396 68589 2360 320
24 4 30 24 4 62 286 71333 2208 320

Crane 101362 2864

4 47 147 135 50 379 15199 105302 2652 600
8 21 77 65 24 187 3951 109493 2648 410

12 5 57 49 6 117 1828 113983 2520 370
16 2 49 35 6 92 1065 118057 2512 330
20 4 40 34 4 82 704 121936 2560 320
24 3 32 26 3 64 506 126204 2544 310

Letter T 117966 2100

4 168 135 129 168 600 17480 121105 2800 570
8 20 68 64 19 171 4502 124763 2288 410

12 45 47 43 44 179 2057 128262 2676 360
16 10 37 31 10 88 1227 136014 2320 330
20 0 32 24 1 57 805 139430 2180 320
24 1 26 20 1 48 551 137428 2184 310

Dancer 46280 2997

4 75 161 141 82 459 7295 50541 2772 530
8 28 84 74 30 216 1967 54511 2608 390

12 11 56 52 10 129 951 59298 2472 350
16 16 46 38 17 117 565 62631 2592 340
20 4 33 27 4 68 387 67030 2280 330
24 8 29 23 8 68 274 68340 2352 320

Bear 36450 1238

4 27 67 53 31 178 5511 38181 1208 130
8 7 39 25 11 82 1443 39990 1144 90

12 4 24 12 7 47 690 43024 1116 90
16 7 15 13 5 40 395 43786 1136 80
20 1 20 10 3 34 273 47285 1100 70
24 3 18 8 5 34 189 47139 1176 70

|A| = number of object pixels; n = number of pixels on the boundary of A; g = grid size; nθ = number of
vertices with internal angle θ (= 60, 120, 240, 300); nv = total number of vertices of P ; nT = number of
UGTs in outer cover; |P | = number of pixels in P ; T=CPU time in milliseconds; pP = perimeter of P .

Table 3.1: Summary of experimental results.
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OTC (g = 4) OTC (g = 10)

ITC (g = 4) ITC (g = 10)

Figure 3.9: The OTCs and ITCs corresponding to the image Horse for g = 4 and g = 10.
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OTC (g = 2) OTC (g = 7)

ITC (g = 2) ITC (g = 7)

Figure 3.10: The OTCs and ITCs corresponding to the image Cyclist for g = 2 and g = 7.
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Chapter 4

Application of Triangular Covers

An approximate shape of an object is captured by the triangular cover from which a chain code
representing the shape of the object is derived which can be used for shape analysis. For this
purpose we have put to use the Levenshtein Distance which is the minimum number of insertions,
deletions or substitutions required to convert one string i.e., chain code into other [64].

• A database consisting of 125 shapes has been created. Some of these shapes are downloaded
from the internet and some are taken from MPEG7 database.

• All the images are normalized to 256 × 256 such that the width and height of the bounding
rectangle of all the shapes are same.

• The chain codes of all the shapes are generated using Algo. 3.3.3 and are saved in a file B.txt.

• For the query image, the chain code is also generated known as the query code.

• The Levenshtein Distance between the query code and the file containing all the chain codes
of the shapes are computed and stored in another file say C.txt.

• The values of C.txt which are the dissimilarity measures, are sorted in ascending order.

• Based on the sorted values of C.txt, the shapes are retrieved matching with the query image
in an increasing order of the Levenshtein distance measure. This is because of the fact that
the shapes having less Levenshtein measures are more similar to the query shape.

Several experimental results have been shown in Figures 4.1, 4.2, 4.3 and 4.4 where shapes similar
to the query image have been retrieved from a given shape database in the increasing order of their
Levenshtein distances.
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(a) (b) (c)

Figure 4.1: Query Images (a) Hand, (b) Geometric Shape and (c) Hammer.

0 0 0

18 8 6

23 9 7

23 14 8

25 15 10

27 20 24
(d) (e) (f) (g) (h) (i) (j) (k) (l)

Figure 4.2: (d), (g), (j) Triangular Cover at g = 20. (e), (h), (k) Original Image. (f) Leven-
shtein Distance w.r.t. Fig. 4.1a. (i) Levenshtein Distance w.r.t. Fig. 4.1b. (l) Levenshtein Distance
w.r.t. Fig. 4.1c.
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(a)

Figure 4.3: Query Image (a) Cow.

0 70

62 75

68 77

68 78

68 79

69 79
(b) (c) (d) (e) (f) (g)

Figure 4.4: (b), (e) Triangular Cover at g = 10. (c), (f) Original Image. (d), (g) Levenshtein
Distance w.r.t. Fig. 4.3a.
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Chapter 5

Finding Largest Rectangle inside a
Digital Object and its
Rectangularization

5.1 Introduction

One of the geometric optimization problem in the class of polygon inclusion is finding the largest
area axis-parallel rectangle (LR) inside a general polygon of n vertices [13]. For several practical
importance the problem can be formulated for various scenarios (e.g. in convex polygon, in orthog-
onal polygon, etc.). The detection of the largest area subrectangle with sides parallel to the given
rectangle of N points where the subrectangle does not contain any of the N points is proposed in
[15, 16] with O(N log3N) time complexity and O(N logN) space complexity. Aggarwal et. al. [1]
stated an improved algorithm that takes same O(n log3 n) time but O(n) space. Another algorithm
proposed by them has O(n log2 n) time complexity and O(n) space complexity. The geometric opti-
mization problem of finding maximum area axis parallel rectangle from a n-vertex general polygon
is presented in [22] where the different cases are considered based on the types of contacts between
the rectangle and the polygon. A framework is also proposed that can transform an algorithm for
orthogonal polygons into an algorithm for non-orthogonal polygons and showed that the running
time of their algorithm for general polygons to be O(n log2 n). Also, the lower bound for finding
the largest empty rectangles in both self-intersecting polygons and general polygons with holes has
been established to be O(n log n).

McKenna et al. [44] use a divide-and-conquer approach to find the largest rectangle in an
orthogonal polygon in O(n log5 n) time. For the merge step at the first level of divide-and-conquer,
they obtain an orthogonal, vertically separated, horizontally convex polygon. At the second level,
their merge step produces an orthogonally convex polygon, for which they solve the LR problem
in O(n log3 n) time. They also establish a lower bound of time in Ω(n log n) for finding the largest
rectangle in orthogonal polygons with degenerate holes, which implies the same lower bound for
general polygons with degenerate holes.

LR problem has many applications in electronic design automation and design and verification of
physical layout of integrated circuits [52, 63]. Largest area rectangle problem has many interesting
industrial applications also, e.g., consider a sheet of fabric or a rectangular piece metal with certain
number of flaws in it. This problem can be applied to find a maximum area rectangular sheet that
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(a) (b) (c)

Figure 5.1: (a) The digital object, A, (b) Inner isothetic cover (g = 8), (c) Largest Rectangle.

does not contain any flaws.
Another variation of the same problem is presented here— finding largest rectangle in a digital

object which is applicable for shape analysis of the object. The inner isothetic cover of the digital
object is found which tightly inscribes the digital object. The digital object and the inner isothetic
covers are shown in Fig. 5.1(a)-(b). It is to be noted that the grid size may be varied for better
shape analysis of the digital object. The boundary of the inner isothetic cover is traversed counter
clockwise and the combinatorial rules are applied wherever required. The resulting largest rectangle
may not be unique. A largest rectangle for the object shown in Fig. 5.1(a) is given in Fig. 5.1(c)
for grid size g = 8. The algorithm presented in this chapter runs in O(n log n) time, where n is the
number of pixels on the contour of the digital object.

The chapter is organized as follows. Section 5.2 presents the definitions and preliminaries required
to understand the chapter. Section 5.3 describes the rules to determine a largest rectangle inside
a digital object. The properties of largest rectangle are discussed in Sec. 5.4. Experimental results
and related data are given in Sec. 5.5. Section 5.6 presents the concept of rectangularization using
largest rectangle which is a novel concept.

5.2 Definitions and Preliminaries

A digital object, A (henceforth referred to as an object), is a finite subset of Z2, which consists of
one or more k(= 4 or 8)-connected components [37]. In this chapter, we consider the object as a
single 8-connected component. We need the following definitions in the context of our work.

Definition 11 (Grid). The background grid is given by G = (H,V), where H and V represent
the respective sets of (equi-spaced) horizontal grid lines and vertical grid lines. The grid size, g, is
defined as the distance between two consecutive horizontal/vertical grid lines. A grid point is the
point between intersection of a horizontal and a vertical grid line. A unit grid block (UGB) is the
smallest square having its four vertices as four grid points and edges as grid edges.

Definition 12 (Isothetic Polygon). An isothetic polygon P is a simple polygon (i.e., with non-
intersecting sides) of finite size in Z2 whose alternate sides are subsets of the members of H and V.
The polygon P , hence given by a finite set of UGBs, is represented by the (ordered) sequence of its
vertices, which are grid points. The border BP of P is the set of points belonging to its sides. The
interior of P is the set of points in the union of its constituting UGBs excluding the border of P .

An isothetic cover has two type of vertices 900 (type 1) and 2700 (type 3).
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Definition 13 (Inner Isothetic Cover). The inner (isothetic) cover (IIC), denoted by P (A), is a set
of inner polygons and (inner) hole polygons, such that the region, given by the union of the inner
polygons minus the union of the interiors of the hole polygons, contains a UGB if and only if it is a
subset of A.

Definition 14 (Convex Edge and Convexity). An edge of P defined by two consecutive vertices of
type 1 is termed as a convex edge, as it gives rise to a convexity.

Definition 15 (Concave Edge and Concavity). An edge defined by two consecutive type 3 vertices
gives rise to a concavity, and hence termed as a concave edge.

5.2.1 Deriving the Inner Isothetic Cover

Using the algorithm in [9, 6], we obtain (the ordered set of vertices of) P for A, which is, therefore,
the maximum-area isothetic polygon inscribing A. During the construction of P , the vertices and
grid points lying on the edges of P are dynamically inserted in a circular doubly-linked list, L, and
simultaneously in two lexicographically sorted (in increasing order) lists, Lx and Ly, with respective
primary and secondary keys as x- and y-coordinates for Lx, and vice versa for Ly. Each node of the
list L has two level pointers, the lower level pointers are used to link both edge and corner points of
IIC and the top level pointers are used to link only the corner points of IIC.

5.3 Procedure to Determine a Largest Rectangle

To find a largest rectangle, the inner isothetic cover P (constructed using the algorithm in [9, 6])
is traversed in anti-clockwise direction from its top left corner. During this traversal, whenever a
convex edge is encountered, corresponding histogram polygon (i.e., a portion of the main polygon)
is constructed. Largest rectangle inscribed in the histogram polygon is determined. The convexity
encountered in P is reduced using the appropriate reduction rule. After reduction, it may give rise to
a convex edge, corresponding to which the histogram polygon, thereof the largest rectangle inscribed
in it, is determined. Thus, the traversal continues till it reaches the start point of P , the largest
of all such largest rectangles, inscribed in the histogram polygons of convex edges, is the resulting
largest rectangle of P .

5.4 Properties of Largest Rectangle in a Digital Object

The largest rectangle tightly fits into the inner isothetic cover. It exhibits several interesting prop-
erties.

Theorem 6. The four sides of the largest rectangle must coincide with at least four edges of the
inner isothetic cover partly or fully.

Proof. A largest rectangle tightly fits in the inner isothetic cover. Let us consider the smallest
possible rectangle inside an isothetic polygon. Let the four sides (left, right, top, and bottom) of the
rectangle be sl, sr, st and sb, respectively. The rectangle has to be expanded as much as possible.
Suppose sl, sr, st and sb are moved towards left, right, top, and bottom, until there are some
obstructions. These obstructions are nothing but the edges of the inner cover.

Now, let us assume that three sides of the largest rectangle coincides with the edges of the inner
isothetic cover partly or fully. There is one side which does not coincide with any of the edges of the
isothetic polygon. Thus, there is a scope for expansion upto the obstruction, i.e., upto the edge(s)
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of the isothetic polygon. Hence, it can be stated here that the four sides of the largest rectangle
coincide with the edges of the inner isothetic cover, partly or fully. It is trivial to proof that for four
sides at least four obstruction (i.e., edges) are required.

Area Coefficient:
Largest rectangle is not unique. There may be more than one largest rectangle having same area.
In most of the cases, it is seen that the largest rectangle represents the central area of the digital
object. The following shape signature can be defined in this context. Let α be the area-coefficient
of the largest rectangle, i.e. the portion of the digital object occupied by the largest rectangle. It is
defined as follows.

α =
ALR.area

Ain.area
(5.1)

In Eqn. 5.1, A.area and ALR.area are the area of the inner isothetic cover, Ain, inscribing the digital
object, A, and the largest rectangle, ALR, respectively. α becomes 1, when the largest rectangle
occupies the whole area of Ain (where Ain must be a rectangle). If the value of α is almost equal
to zero, then it implies that the corresponding object is very complicated. When the value of α is
high, then it can be said that the object is simple and largest rectangle occupies most of the portion
of the object.

5.5 Experimental Results

The proposed algorithm is implemented in C in Ubuntu 12.04, 64-bit, kernel version 3.5.0-43-generic,
the processor being Intel i5-3570, 3.4 GHz FSB. Experimental results of different digital objects are
shown in Fig. 5.2. It is seen that a largest rectangle occupies approximately one-third area of inner
isothetic polygon.

Some important observations on largest rectangle from the experimental results are noted here
which make it useful for shape analysis of a digital object. The largest rectangles for various grid
sizes inside the same digital object are shown in Fig. 5.3. The areas of the largest rectangles remain
almost same for different grid sizes of the object. The position of the largest rectangles may slightly
vary which are shown in Fig. 5.3, as the inner isothetic cover changes slightly for different grid sizes.

A largest rectangle for various rotations of the Hand image is shown in Fig. 5.4. It is seen that
the largest rectangle every time appears almost in the same position— in the plam. The positions
for all the rectangles are almost same. After rotation the area of the largest rectangle will change.
It can be claimed that the largest rectangles are position invariant for various rotations. Largest
rectangle can be used to detect central region of a digital object. This property may be useful for
shape analysis of the digital object.

5.6 Rectangularization Using Largest Rectangle

The intersection of Ain with the largest rectangle may create a set of sub-polygons, A. The cardi-
nality of this set will be zero only when Ain itself a rectangle. Let the cardinality of A be t and
A = {a1, a2, . . . , at}. For each of the sub-polygons in A, largest rectangles can be obtained. Let aLR

i

be the largest rectangle for the sub-polygon ai. Similarly, aLR
i divides ai into many sub-polygons.

By recursive generation of this procedure, a tree can be formed which is termed as LR-Tree. The
number of branches at each level is the number of sub-polygons generated on intersection of the
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(a) Plus Symbol (b) Dancer (c) Cat

(d) Kangaroo (e) Mapple Leaf (f) Cartoon

(g) Teddy (h) Tortoise (i) Flower

Figure 5.2: Largest area rectangles (shaded in yellow) inside six different objects for g = 8.

largest rectangle with the polygon or sub-polygon. A node in the LR-Tree will be a leaf node for
which t = 0 and α = 1. Each node contains two information and they are the area-coefficient and
the level. All these information are useful for shape analysis of the digital object. This procedure
leads to rectangularization of the inner isothetic cover. The inner isothetic cover is decomposed into
non-overlapping rectangles (overlapping occurs only at the boundaries) based on largest rectangle
criteria. Two types of edges are there in the LR-Tree— strong edge (represented by solid and thick
line) and weak edge (represented by dashed line). A node at level i will be connected to a node at
level i + 1 by strong edge if the two corresponding rectangles coincide at one side, otherwise they
will be connected by weak edge. The LR-Tree can be converted into a LR-Graph based on rectan-
gularization by adding one more edge termed as forward edge. The two nodes at level i and level
j where |i− j| = 1, are connected by forward edge (denoted by solid line) if the two corresponding
rectangles have overlapping boundaries.

A rich literature survey exists on the polygon decomposition problem. A polygon can be de-
composed into convex components, rectangles, star-shaped components, monotone components, etc.
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(a) g = 2 area = 7668 (b) g = 4 area = 7392

(c) g = 6 area = 7308 (d) g = 8 area = 7040

(g) g = 10 area = 6500 g = 12 area = 7056

Figure 5.3: Position of largest rectangle of an object for different grid size.
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(a) angle=0o, area=13312 (b) angle=45o, area=10240

(c) angle=90o, area=12544 (d) angle=180o, area=12288

(e) angle=315o, area=9600 (f) angle=270o, area=12288

Figure 5.4: Largest area rectangle (shaded in yellow) obtained in six different rotations of same
object for g = 8.

Here, in this chapter we will only give a brief study on the decomposition of polygons in rectangular
components. Polygon decomposition has many applications in theory and practice, especially in
visual pattern recognition and image analysis [14, 36, 54, 56, 62]. Minimum rectangular partition of
digitized blobs has been performed by using the properties of bipartite graph in [29]. A technique
for partitioning of orthogonal polygons into rectangles by extension of edges from reflex vertices is
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Figure 5.5: Rectangularization using largest rectangle and corresponding LR-Graphs. The levels are
mentioned in the rectangles.

shown in [3]; upper and lower bounds for the number of convex components have also been obtained.
Hence, rectangularization using largest rectangle is a novel work.

For different types of object, the LR-Graph will have different structures. The LR-Graph for the
object shown in Fig. 5.5(b) has no weak edges. The number of levels (if LR-Tree is considered) is
less compared to the number of nodes. The structure of this object is symmetric. It indicates less
complicated object. For the spiral type object, the number of levels is higher in LR-Tree. The LR-
Graph contains all types of edges. It indicates a complex object. For shape analysis, several metrics
can be defined based on the types of edges, number of levels, number of nodes, area-coefficient of
each nodes, etc.
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Chapter 6

Conclusion

The proposed algorithm (FSIP) in Chapter 2 finds the region containing all possible shortest isothetic
paths between two given points. The algorithm is efficient, and given the inner isothetic cover P ,
it runs in a time linear in the number of grid points on the border of P . The algorithm can be
applied on digital objects without holes. However, for objects with holes, it requires appropriate
modifications. Results for multiple FSIPs are also shown in this chapter, where the control points
are chosen manually. An algorithm or heuristic can be designed to find such control points in a given
digital object, which may enhance this work and further its scope towards effective shape analysis,
such as finding critical regions, as shown in this chapter.

We have proposed an algorithm (Chapter 3) for constructing a minimum-area cover of a digital
object on a triangular grid. It can be used to determine all outer triangular polygons including
the outer triangular hole polygons in a digital object with multiple components and holes. The
minimum-area cover provides a compact geometric information of the object, which is useful in
shape characterization along with those obtained from orthogonal or isothetic covers. Further, its
runtime can be controlled by tuning the grid size, which offers a mechanism of trading off speed
with granularity of the object boundary. Experimental results demonstrate that a triangular cover
can serve as an approximate estimate of shape complexity and of similar other signatures used for
characterizing a digital object.

There are several applications of triangular covers, one of them have been implemented and
analysed as shown in Chapter 4 with results shown. Further analysis of this shape retrieval technique
will be exploited in the near future. Triangular polygons can further be studied for digital convexity,
medical image processing, developing triangular convex hull etc.

Chapter 5 presents a combinatorial algorithm to find a largest area rectangle inside a digital
object in O(k.n/g + (n/g) log(n/g)) time. Experimental results of the algorithm along with data
and related explanations are also provided. The usefulness of the largest rectangle in the context
of shape analysis is also given. The decomposition of a digital object using largest rectangles is
given here. This problem has some industrial applications also which has been stated in Sec. 5.1.
In future, some topological information for the digital objects can be derived from above mentioned
technique. The shape analysis using LR-Graph and rectangularization can be done later on. All
these implies the practical importance of the problem in various shape related applications.

49



Bibliography

[1] A. Aggarwal and S. Suri. Fast algorithms for computing the largest empty rectangle. In Proc.
3rd Annu. Symposium on Computational Geometry, pages 278–290, 1987.

[2] E. Arkin, J. Mitchell, and C. Piatko. Minimum-link watchman tours. Information Processing
Letters, 86:203–207, 2003.

[3] A. L. Bajuelos, A. P. Tomás, and F. Marques. Partitioning orthogonal polygons by extension of
all edges incident to reflex vertices: lower and upper bounds on the number of pieces. In Proceed-
ings of the International Conference Computational Science And Its Applications (ICCSA’04),
volume 3045 of LNCS, pages 127–136, Assisi, Italy, 2004. Springer-Verlag.

[4] M. Beeson. Triangle tiling I: The tile is similar to ABC or has a right angle. arXiv preprint
arXiv:1206.2231, 2012.

[5] C. P. D. Birch, S. P. Oom, and J. A. Beecham. Rectangular and hexagonal grids used for
observation, experiment and simulation in ecology. Ecological Modelling, 206(3):347–359, 2007.

[6] A. Biswas, P. Bhowmick, and B. B. Bhattacharya. TIPS: On finding a tightisothetic polygonal
shape covering a 2d object. In 14th Scandinavian Conference on Image Analysis (SCIA), volume
3540, pages 930–939. Springer, Berlin, 2005.

[7] A. Biswas, P. Bhowmick, and B. B. Bhattacharya. TIPS: On Finding a Tight Isothetic Polygonal
Shape Covering a 2D Object. In Proceedings of the 14th Scandinavian Conference on Image
Analysis, volume 3540 of LNCS, pages 930–939, Joensuu, Finland, 2005. Springer-Verlag.

[8] A. Biswas, P. Bhowmick, and B. B. Bhattacharya. Construction of isothetic covers of a digital
object: A combinatorial approach. Journal of Visual Communication and Image Representa-
tion, 21(4):295–310, 2010.

[9] A. Biswas, P. Bhowmick, and B. B. Bhattacharya. Construction of isothetic covers of a digital
object: A combinatorial approach. J. Vis. Comun. Image Represent., 21(4):295–310, May 2010.

[10] A. Biswas, P. Bhowmick, M. Sarkar, and B. B. Bhattacharya. A linear-time combinatorial
algorithm to find the orthogonal hull of an object on the digital plane. Information Sciences,
216:176–195, 2012.

[11] O. Bodini and E. Rémila. Tilings with trichromatic colored-edges triangles. Theoretical Com-
puter Science, 319(1):59–70, 2004.

[12] S. Butler, F. Chung, R. Graham, and M. Laczkovich. Tiling polygons with lattice triangles.
Discrete & Computational Geometry, 44(4):896–903, 2010.

50



[13] J. Chang and C. Yap. A polynomial solution for the potato-peeling problem. Discrete Compu-
tational Geometry, 1:155–182, 1986.

[14] B. Chazelle. Approximation and decomposition of shapes. In J. T. Schwartz and C. K. Yap,
editors, Proceedings of the, pages 145–186, Hillsdale, NJ, 1987. Lawrence Erlbaum Associates.

[15] B. Chazelle, R. L. Drysdale, and D. T. Lee. Computing the largest empty rectangle. In STACS-
1984, pages 43–54. Springer, 1984.

[16] B. Chazelle, R. D. III, and D. Lee. Computing the largest empty rectangle. SIAM J. Comput.,
15:300–315, 1986.

[17] W. P. Chin and S. Ntafos. The zookeeper route problem. Information Sciences, 63(3):245–259,
1992.

[18] K. L. Clarkson, S. Kapoor, and P. Vaidya. Rectilinear shortest paths through polygonal ob-
stacles in o(n(log n)2) time. In Proceedings of the 3rd Annual Symposium on Computational
Geometry, SCG ’87, pages 251–257, New York, NY, USA, 1987. ACM.

[19] R. G. Clason. Tiling with golden triangles and the penrose rhombs using logo. Journal of
Computers in Mathematics and Science Teaching, 9(2):41–53, 1989.

[20] J. H. Conway and J. C. Lagarias. Tiling with polyominoes and combinatorial group theory.
Journal of Combinatorial Theory, Series A, 53(2):183–208, 1990.

[21] H. Daniel, K. Tom, and L. Elmar. Exploring simple triangular and hexagonal grid polygons
online. arXiv preprint arXiv:1012.5253, 2010.

[22] K. Daniels, V. Milenkovic, and D. Roth. Finding the largest area axis-parallel rectangle in a
polygon. Computational Geometry: Theory and Applications, 7:125–148, 1997.

[23] M. de Berg. On rectilinear link distance. Computational Geometry: Theory and Applications,
1(1):13–34, 1991.

[24] M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars. Computational Geometry Algorithms
and Applications. Springer-Verlag, Heidelberg, 2008.

[25] M. de Berg, M. van Kreveld, B. J. Nilsson, and M. H. Overmars. Finding shortest paths in the
presence of orthogonal obstacles using a combined l1 and link metric. In Proceedings of the 2nd
Scandinavian Workshop on Algorithm Theory, volume 447 of LNCS, pages 213–224, Bergen,
Norway, 1990. Springer-Verlag.

[26] M.-P. Dubuisson-Jolly and A. Gupta. Tracking deformable templates using a shortest path
algorithm. Computer Vision and Image Understanding, 81(1):26–45, 2001.

[27] A. Dumitrescu and J. S. B. Mitchell. Approximation algorithms for tsp with neighborhoods in
the plane. J. Algorithms, 48(1):135–159, 2003.

[28] M. Dutt, A. Biswas, P. Bhowmick, and B. B. Bhattacharya. On finding shortest isothetic
path inside a digital object. In R. P. Barneva, editor, Proceedings of the 15th International
Workshop on Combinatorial Image Analysis: IWCIA’12, volume 7655 of LNCS, pages 1–15,
Austin, Texas, November 2012. Springer-Verlag.

51



[29] L. Ferrari, P. V. Sankar, and J. Sklansky. Minimal rectangular partitions of digitized blobs.
Computer Vision, Graphics, and Image Processing, 28(1):58–71, 1984.

[30] H. Freeman. Algorithm for generating a digital straight line on a triangular grid. IEEE Trans-
actions on Computers, 100(2):150–152, 1979.

[31] M. Gardner. Knotted Doughnuts and Other Mathematical Entertainments. Freeman and Com-
pany, New York, 1986.

[32] S. K. Ghosh. Visibility Algorithms in the Plane. Cambridge University Press, New York, USA,
2007.

[33] C. Goodman-Strauss. Regular production systems and triangle tilings. Theoretical Computer
Science, 410(16):1534–1549, 2009.

[34] J. Gudmundsson and C. Levcopoulos. A fast approximation algorithm for tsp with neighbor-
hoods and red-blues separation. In Proceedings of the 5th Annual International Conference
on Computing and Combinatorics, COCOON ’99, pages 473–482, Berlin, Heidelberg, 1999.
Springer-Verlag.

[35] H. Innchyn. Geometric transformations on the hexagonal grid. IEEE Transactions on Image
Processing, 4(9):1213–1222, 1995.

[36] J. M. Keil and J. R. Sack. Minimum decompositions of polygonal objects. In J. T. Toussaint,
editor, Computational Geometry, pages 197–216. North-Holland Publishing, Amsterdam, 1985.

[37] R. Klette and A. Rosenfeld. Digital Geometry: Geometric Methods for Digital Picture Analysis.
Morgan Kaufmann, San Francisco, 2004.

[38] R. Klette and A. Rosenfeld. Digital Geometry: Geometric Methods for Picture Analysis. Morgan
Kaufmann, San Francisco, CA, 2004.

[39] M. Laczkovich. Tilings of convex polygons with congruent triangles. Discrete & Computational
Geometry, 48(2):330–372, 2012.

[40] R. C. Larson and V. O. Li. Finding minimum rectilinear distance paths in the presence of
barriers. Networks, 11:285–304, 1981.

[41] F. Li and R. Klette. Finding the shortest path between two points in a simple polygon by ap-
plying a rubberband algorithm. In Proceedings of the First Pacific Rim conference on Advances
in Image and Video Technology, volume 4319 of PSIVT’06, pages 280–291, Berlin, Heidelberg,
2006. Springer-Verlag.

[42] T. Lozano-Perez and M. A. Wesley. An algorithm for planning collision-free paths among
polyhedral obstacles. Magazine Communications of the ACM, 22(10):560–570, 1979.

[43] E. Luczak and A. Rosenfeld. Distance on a hexagonal grid. IEEE Transactions on Computers,
25(5):532–533, 1976.

[44] M. McKenna, J. O’Rourke, and S. Suri. Finding the largest rectangle in an orthogonal polygon.
In Proc. 23rd Allerton Conference on Communication, Control and Computing, pages 486–495,
1985.

[45] B. Nagy. Neighbourhood sequences in different grids. PhD thesis, University of Debrecen, 2003.

52



[46] B. Nagy. Shortest paths in triangular grids with neighbourhood sequences. Journal of Com-
puting and Information Technology, 11(2):111–122, 2003.

[47] B. Nagy. Characterization of digital circles in triangular grid. Pattern Recognition Letters,
25(11):1231–1242, 2004.

[48] B. Nagy. Generalised triangular grids in digital geometry. Acta Mathematica Academiae Paed-
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