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Chapter 1

Getting into Algorithms

Algorithms are step-by-step procedure to solve computational problems. Steps
are to be well-defined. An algorithm takes some input and produces output
in finite amount of time. So, algorithms are functions.

Although there is no universally-accepted definition of Algorithm, we
sometime define it as following:

Definition 1 An algorithm is a step-by-step procedure that solves a compu-
tational problem and possesses following characteristics.

1. Definiteness: Each step must be precisely defined; the actions to be
carried out must be rigorously and unambiguously specified for each
case.

2. Finiteness: It must always terminate after a finite number of steps.
3. Output: An algorithm always produces an output.
4. Input: Algorithms take finite amount of inputs.

Sometime the fourth characteristic may become optional to some algo-
rithms. For example, if the problem is - “Find the summation of 100 natural
numbers”, then the algorithm that solves this problem does not need an in-
put. However, these are trivial cases. In general, algorithms take some input,
on which it works.

1.1 Programs and Algorithms
Programs have many similarities with algorithms. Like algorithms, programs
solve computational problems, and they are too step-by-procedure. Programs
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have also input and output. However, there are a number of technical differ-
ences.

Programs are written in formal language, whereas algorithms have no
such burden. We generally use natural language to write down an algorithm;
one can use pseudo-code or any formal language. If above mentioned four
properties are followed and they are communicable to the intended persons,
then the step-by-step procedure is an algorithm. It may be noted here that
Programs are not necessarily computer programs. Programs can be written
in any mathematical language. And the point is, syntax of the language is to
be strictly followed. In case of computer programs, syntax of programming
language is strictly followed.

Historically, the idea of algorithms came much before than that of pro-
grams. Euclid’s procedure of finding GCD is considered as the first algorithm
of the world, and it dates back to 300 BC. Whereas history of programs can
hardly be of 200 years.

In the modern study of algorithms, however, we consider that programs
and algorithms are complementary of each other. Finally we have to write
programs if we want to use computer to solve a problem. It is sometime con-
sidered that the algorithms are theoretical study of (computer) programs.
The relation between these two mathematical entities is generally viewed as:

Algorithm+Formal Language=Program

1.2 Problems
Before designing algorithm as solution to a problem, we need to clearly and
precisely write down the problemI. The statement of a problem has to specify
the set of inputs and desired output. Mathematically, problem is a binary
relation from a set of possible inputs to a set of possible outputs.

1.2.1 An Example Problem: Searching
Problem statement: Given a list of records R1, R2, · · ·Rn, identified by
keys K1, K2, · · · , Kn respectively, decide if a record against a given key K
exists (if exists, output the corresponding record).

IBy “problem” we refer to computation problem only. Throughout the discussion, this
meaning will persist.



Here inputs of the problem are a list of records and a key, also called
search key, and output is yes if record against the search key exits and no
otherwise. Hence, a problem is binary relation. In case of searching problem,
the binary relation is defined

from{R1, R2, · · · , Rn} × {K} to {yes, no}

As a variant of the problem, output can be the desired record if it exists and
‘no’ if it does not. Strictly speaking, this is a new problem as its output set
is different from the above. However, we roughly call both the problems as
Searching Problem.

A number of algorithms may be developed to solve a given problem.
For the searching problem, a number of algorithms exist, such as Sequential
Search Algorithm, Binary Search Algorithm, Fibonacci Search Algorithm, etc.

1.2.2 An Example Algorithm: Sequential Search Algo-
rithm

Let us now show a standard way of writing algorithm. Here we clearly specify
input and output of the algorithm. It may also be noted that the steps are
well-defined: nothing is written in vague words. When computer program is
written from the algorithm then what is to be done is clearly mentioned in
the step;s.

Algorithm 1 SSearch
Input: A list of records R1, R2, · · · , Rn identified by keys K1, K2, · · · , Kn

respectively; K (Search Key).
Output: ‘YES’ if the record exists; ‘NO’ otherwise.
Step 1: Set i← 1
Step 2: If K = Ki , output ‘YES’ and exit.
Step 3: i← i+ 1
Step 4: If i > n, then output ‘NO’; otherwise go to Step 2.

1.3 Proof of correctness
Whether an algorithm can produce its promised output for any possible input
is to be carefully checked. This is the primary task to check correctness of



an algorithm. Additionally, we have to check whether or not definiteness,
finiteness, input and output are present in an algorithm. It is clear that, in
the above algorithm input and output are clearly specified, every step is well
defined and the algorithm halts after some finite steps. For this algorithm, it
is trivial to show that the algorithm outputs ‘Yes’ if the desired record exists,
and ‘No’ otherwise.



Chapter 2

Analysis of Algorithm

For the same problem statement, we can have arbitrarily many algorithms.
So, to find out which algorithm is better than others, performance of an
algorithm is analyzed. To measure this performance, the cost of getting the
solution is to be found out. This cost is – how much resources of a computing
system that particular algorithm demands to solve the problem. Resources
can be of different types. Which particular resource is to be emphasized in
finding the performance of an algorithm depends on the computing system
and use of the algorithm.

Whenever an algorithm demands more amount of resources than another,
we call that the first algorithm is more complex than the second. So to mea-
sure the goodness of an algorithm, we introduce the notion of complexity.
Finding out complexities of algorithms, in order to understand their good-
ness, is know as Analysis of Algorithms.

2.1 Complexity Measure
Since algorithm is an abstract object, to understand its performance, we need
to implement the algorithm as a program and run it on some computing
machine. In this course, we always consider single-processor machine to run
the program.
Type of machine: Single-processor computer with single memory unit.
That is, parallel processing is not allowed. In such a machine, following are
the most important resources that are needed to run a program.

• Time – Amount of time needed for execution of the program (time
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complexity)
• Space – Amount of extra space needed for execution of the program

(space complexity)
• Disk access – Number of disk access needed to retrieve the data from

secondary storage

For different type of machine and computing, however, other resources
such as Messages (Number of message passed in case of distributed systems),
Packets (Number of packets transmitted for Internet), Bandwidth, etc. are
to be taken care of.

Normally, complexity is dependent on the size of the input (n), so, it
is represented as a function of the size of the input. For example, time
complexity is T (n) and space complexity is S(n). In this course, we shall
deal with only time and space complexities. We assume that we have enough
space to accommodate data and program in main memory, which nullifies
the need of secondary memory.

However, demand of resource by an algorithm depends on types of pos-
sible inputs. There are mainly three cases of possible inputs which are con-
sidered to study the complexity of an algorithm:

1. Best case: The situation when the algorithm requires minimum number
of resources. Usually, we are not interested in this.

2. Worst case: The situation that has maximum resource demand for the
algorithm. For example, if we consider time complexity, then the worst
case is the situation when maximum amount of time is required to get
the answer.

3. Average case: Average resource requirement of the algorithm consider-
ing all possible situations.

In general, average case complexity is as bad as the worst case. We normally
are interested in the worst case complexity of an algorithm, which indicates
that the algorithm cannot take more resource than it under any circumstances
So, if not mentioned otherwise, by complexity we shall mean worst case time
complexity only.



2.2 Role of Model of Computation
As mentioned, to measure the complexity of an algorithm, that is, its re-
source requirement, the algorithm has to be implemented on some machine.
However, same algorithm may give different complexity values depending on
the implementation. Even same program may require different execution
time on different machines as the machines can have different speeds! That
is, complexity becomes machine dependent. But, it should not be so. There-
fore, we need a standard machine to measure complexity. To deal with this,
an abstract machine is considered as the standard platform for measuring the
complexity. This abstract machine is called a model of computation. So, to
analyze an algorithm, that is, how good or bad it is, we always need a model
of computation. Any model of computation is a formal system associated
with a formal language for implementing the algorithm. Following are some
popular models of computation:

• Turing Machine (TM) (see Figure 2.1),
• Random Access Machine (RAM) Model,
• Random Access Stored Program (RASP),
• Counter Machine or Register Machine, etc.

Finite

Control

Read/Write Head

Figure 2.1: Schematic diagram of a Turing Machine

Among the above models, Turing Machine (TM) is the primitive model
of computation and the most expressive one. One can choose any of these
models, but the choice has impact on complexities of algorithms. For ex-
ample, if TTM(n) and TRAM(n) are worst case time complexities of same
algorithm on Turing machine and RAM model respectively, then generally
TTM(n) > TRAM(n). Since the algorithms are implemented on presently-
available computers, we should choose a model which has close resemblance



with standard single-processor computer architecture. Here we choose RAM
Model as our model of computation as it has many similarities with stan-
dard von Neumann architecture. Note, however, that all of these models are
computationally universal.

2.3 Random Access Machine (RAM) Model
This model is also known as Unlimited Register Machine (URM) model. The
name comes from its feature of having unlimited number of registers that
store integer values and are accessible randomly. The first register r0 is the
accumulator where all computations are performed. The following is the
block diagram of RAM Model.

LC
Program

r0

r1

r2

Read only tape

Write only tape

(one sided infinite)

LC=Location Counter

Figure 2.2: Block diagram of RAM Model

The function of Location Counter (LC) is similar to the program counter
in a computer. A program in RAM model is a sequence of instructions, which
interacts with registers, input and output buffers. Input buffer is read only
whereas output buffer is write only. Likewise registers, input and output
buffers are also one-way bounded infinite and contain infinite number of
boxes/cells. From the cell of input buffer under the read pointer, an integer
can be read and to the cell under the write pointer an integer can be written.
After each read or write operation, the corresponding pointer head moves to
the next cell.

RAM Model is a single accumulator machine with an assumption that
each register and input/output cell can contain an integer of arbitrary length.



So, size of an integer is one word in RAM model. The model uses only 12
instructions, which are sufficient to write any program. It may be noted
here that any real-life microprocessor offers many more instructions to write
a program. For example, 8085 microprocessor, an old microprocessor from
Intel offer around 100 instructions. However, here target is use a very small
set of instructions which can mimic the essential instructions of any single-
processor machine. Following are the instructions that we shall use to develop
programs.

1. READ: Read from input buffer
2. WRITE: Write to output buffer
3. LOAD: Load the register some value
4. STORE: Store content of accumulator to some register
5. ADD: Addition of some value with the value of accumulator
6. SUB: Subtraction of some value from the value of accumulator
7. MULT : Multiplication of some value with the value of accumulator
8. DIV : Division of the value of accumulator by some value
9. JUMP : Unconditional jump to some label

10. JZERO: Jump if content of the accumulator becomes 0
11. JGTZ: Jump if content of the accumulator is greater than 0
12. HALT : Terminate or exit the program

RAM allows direct as well as indirect addressing. If the operand is ‘= i’,
it indicates integer i; if the operand is ‘i’, it means the content of register
number i (direct addressing); however, if the operand is ‘∗i’, it shows indirect
addressing. SWe use a function c to get content of a register. That is, c(i)
gives the content of register i. Let us take “ADD” as example to understand
its meaning under different operands.

ADD = i =⇒ c(0)← (0) + i
ADD i =⇒ c(0)← c(0) + c(i) [direct addressing]
ADD ∗ i =⇒ c(0)← c(c(i)) [indirect addressing]

READ i means read the input cell under ↑ and store the value into ri.
The pointer ↑ will now shift to the next slot. Similarly, WRITE i means
write the content of register ri into the output buffer cell under ↓ and move
pointer ↓ to the next slot.

Note that, more instructions are added to make a computer faster and
also sometimes specifically for operating system designers. For example,



TSL of 8085 is included to solve mutual exclusion problem. But, these 12
instructions of RAM are sufficient to develop any program. Here, the idea
is, once we have our algorithm, we can develop the code for it and see how
much resources (time/space) it takes.

However, if we choose RAM model to analyse our algorithms, our next
task will be to develop program for the algorithms on RAM model using its
12 instructions.

2.3.1 RAM implementation of Algorithm: SSearch
To find the complexity of the sequential searching algorithm (Algorithm 1),
we develop a program for the RAM Model. We assume the following for ease
of implementation:

• Input records are keys only.

• The input tape contains the search key (K), followed by the number
of keys n, followed by the individual keys K1, · · · , Kn in this sequence
(see Figure 2.3a).

• The initial position of the reading head is at the cell containing K.

• We use r1 to store K, r2 to store n and r3 to store a variable i (see
Figure 2.3b).

• If the search key is present (successful search), we write 1 in the output
tape; otherwise, 0 is written.

Now, following is the RAM implementation of Algorithm 1 (SSearch):

1. READ 1 // Read K into r1
2. READ 2 // Read n into r2
3. LOAD = 1 // Load 1 into r0
4. STORE 3 // Store value of r0 = 1 into r3, this indicates i← 1
5. l1 : READ 0 //Read Ki into r0
6. SUB 1 //r0 ← Ki −K
7. JZERO l2 //If r0 = 0 go to label l2
8. LOAD 3 //Load r3 = i into r0
9. ADD = 1 //Increment content of r0 by 1

10. STORE 3 // Store r0 into r3, this implies i← i+ 1



K n K1 K2
Kn

(a) Input buffer

r0

r1 K

r2 n

r3 i

(b) Regis-
ters

Figure 2.3: Content of Input buffer and Registers for RAM implementation
of Algorithm 1

11. SUB 2 //r0 ← r0 − r2 = (i+ 1− n)
12. JGTZ l3 // If i+ 1 > n, go to label l3
13. JUMP l1 // Otherwise go to label l1
14. l2 : WRITE = 1 // Write 1 in output buffer for ‘YES’
15. HALT // Exit
16. l3 : WRITE = 0 // Write 0 in output buffer for ‘NO’
17. HALT // Exit

Here lines 1 and 2 are for the initialization, lines 3 and 4 correspond to
Step 1, lines 5, 6 and 7 are for Step 2, lines 8, 9 and 10 are for Step 3 and
lines 11, 12 and 13 indicate Step 4 whereas lines 11 and 12 implement the if
condition for output ‘NO’.

2.3.2 Complexity Analysis of Algorithm: SSearch
As mentioned, complexity of the algorithm can be derived from the program.
For the searching problem, the worst case is when the searching key is not
present. There are two cost criteria – uniform cost criterion and logarithmic
cost criterion, to get the cost of a program. Here we assume uniform cost
criteria, that is, each instruction has same cost – to execute each instruc-
tion unit time is needed.

Time Complexity: To check worst case time complexity, we consider the



maximum number of times each instruction of the program gets executed. In
this algorithm, the worst case is that the record against the search key (K)
does not exist in the list.

We can observe that, the instructions (1- 4) are executed once taking 4
units of time. The instructions (5 - 13) take 9 time units, but that is actually
a loop. So these 9 steps will be performed for every input until there is a
jump on l2 or l3. As we are considering the worst case, for the last input after
performing instruction 12, it will jump to l3. This time it will not perform
instruction 13. So for n number of keys, instructions (5 - 13) will take 9n−1
units of time. Again, for worst case l3 will be performed and 2 units time is
required for that. So the total time requirement is

T (n) = 4 + 9n− 1 + 2 = 9n+ 5.

This is the worst case time complexity of the algorithm assuming the uniform
cost criterion and considering the above implementation.

Space Complexity: For calculating space complexity, we need to know the
numbers of extra registers used except the accumulator. The space needed
to store the input is not considered as part of space complexity. As three
registers (K at r1, n at r2, i at r3) are used in the program, S(n) = 3. It is
constant here, but generally space complexity also depends on n, the input
size.

Obviously, the uniform cost criteria is for hypothetical machine and is not
realistic. So, sometimes we assign different time units for different instruc-
tions depending on how much bits that process. This is known as logarithmic
cost criteria. Here, cost is assigned with respect to the number of bits used
by the operands. We take log2 of that value. It is more realistic than the
uniform cost criterion.
Note: Complexities found out above depends on the program written against
the algorithm. There are a number of ways of implementing the algorithm.
So based on the implementation, complexities may change.

2.4 More on Mathematical Models of Com-
putation

It is noteworthy to point that, if we change the model of computation, T (n)
and S(n) will also change. Let us consider that, for an algorithm, the program



implementation for RAM needs T1 time units, for Register machine needs T2

time units, whereas, the program for RASP model needs T3 time units. In
general, T1 6= T2 6= T3 (if T1 = T2 = T3, it is a special case).

In case of RAM model, a program can not change itself during its execu-
tion. This contradicts with the modern architecture of a computer, where a
program can also be changed. During execution RAM model is like TM, ex-
cept here location counter (LC) and register set are included. For TM, part
of the I/O tape can work as the register set. Whereas, RASP is very much
similar to von Neumann architecture where we store program and data in
the same place and it can change the code of the program. Models reflect the
essential properties of the actual computer. We always try to make models
as simple as possible.

Computationally all these models are equivalent – complexity measured
in any of these models of computations are polynomially relatedI with each
other. For example, if we get T1(n), T2(n), T3(n) as the time complexities of
same algorithm on different models, then they can be shown as polynomially
related.

Turing machine is called the primitive model of computation. However,
normally we do not use TM in algorithm analysis as it is more difficult to
use. On the other hand RAM model has direct similarities with standard
computer architecture.But, if we want to get more perfection and we want
to know the lower bound of an algorithm, TM should be used. By default,
we shall implement our algorithms on RAM model and find time complexity
based on that.

Remark: All these models are based on stored program architecture derived
from TM and the concept of computability theory is built on that. So, if
a new model is developed which does not follow this architecture, then this
analysis of algorithm will not work. Then a new kin d analysis may be
required to understand the performance of algorithms.

IFor any two functions f(n) and g(n), f(n) is polynomially related to g(n), if there
exists two polynomials p1 and p2 such that the following relation holds:

f(n) ≤ p1(g(n)) and g(n) ≤ p2(f(n))



Chapter 3

Growth of Functions

We have already observed that the time (resp. space) complexity is a function
of the input size n, which is a natural number (n ∈ {0, 1, 2, · · · }). This T (n)
(and S(n)) is a non-negative function.

3.1 Observation on Time Complexity
Consider the time complexity of the Algorithm: SSearch (see Page 11) which
is T (n) = 9n+5 as per our implementation. Let us consider another function
T ′(n) = 9n+ 10. Here, T (n) < T ′(n). But when n grows to a large number,
do these two functions show significant difference? Consider the following
table which shows growth of these function when n grows:

n T (n) = 9n+ 5 T ′(n) = 9n+ 10
0 5 10
1 14 19
2 23 28
3 32 37
5 50 55
10 95 100
100 905 910
1000 9005 9010

100000 900005 900010

Observe that, for small values of n the difference of these two functions is
noticeable, but for large value of n, say 100000, the difference is insignificant.

Now, take another two functions T (n) = n2 and T ′(n) = n2 + 5n + 10.
Growth of these two function against the increase of n is noted in the following
table:

14



n T (n) = n2 T ′(n) = n2 + 5n+ 10
0 0 10
1 1 16
2 4 24
3 9 34
5 25 60
10 100 160
100 10000 10510
1000 1000000 100510

100000 10000000000 10000500010

Here observe that for small values of n, difference between these two
functions is significant. But the significance of difference reduces when n
grows. For n = 100000, T (n) : T ′(n) = 0.99995. That is, they are very
close to each other, and their difference has become insignificant. Further
observe that for large n, T (n) and T ′(n) are dominated by n2. In other
words, growths of these two functions are dominated by n2 and 5n + 10 of
T ′(n) becomes insignificant

As another example, suppose T (n) = n3 + 2n2 + 3n log2 n + 2 is the
time complexity of an algorithm and T ′(n) = n3 is of another. Obviously,
T (n) 6= T ′(n) and T (n) > T ′(n). But like before, we observe the same thing:

n T (n) T ′(n)
0 2 0
1 10 1
2 34 8
4 142 64
8 754 512
16 4802 4096
32 35298 32768
100 1021995.157 1000000
1000 1002029899 1000000000

From these tables, we can find that, when n is small, the percentage of
difference between T (n) and T ′(n) is noticeable. But, if n is increased, the
difference is very less. For large values of n, T (n) : T ′(n) is almost 1:1.

The growth of the functions depends on n. Above example shows that the
growth is practically determined by the highest term of the functions whereas
lower terms become insignificant. In case of analysis of algorithms, we need
not to know always exact complexity because of many reasons. Firstly, exact
calculation of complexity depends on implementation of the algorithm on
some standard machine. If implementation changes or architecture of ma-
chine changes, the calculation will be affected. However, in this case growth
of function remains unaffected. Secondly, size of input can be arbitrarily



large, for which final value of function depends on the highest term and the
lower terms are insignificant. So it is good to approximate the complexities
by simpler functions, growth of which are similar to that of complexities.
This is done through asymptotic notations.

3.2 Asymptotic Notation
The first asymptotic notation was introduced by Paul Batchman in 1892,
which is known as the Big-oh(O) notation. It primarily had no relation with
analysis of algorithms.

3.2.1 Big-Oh Notation
f(n) = O(g(n)) if there exists c, n0 such that 0 ≤ f(n) ≤ c · g(n) for all
n ≥ n0 where c and n0 are two positive constants. Formally,

Definition 2 O(g(n)) = {f(n) : there exists two positive constants c, n0

such that 0 ≤ f(n) ≤ c · g(n), ∀n ≥ n0}

Therefore, O(g(n)) is a set of functions and f(n) is an element of this set,
that is, f(n) ∈ O(g(n)). However, by abusing ‘=’ symbol, we write f(n) =
O(g(n)) to mean f(n) ∈ O(g(n)).

For Big-oh notation, f(n) ≤ c · g(n) with any value of c. So, for f(n) =
n3+2n2+3n log2 n+2, if we consider n0 = 8, then this condition is satisfied
for c = 2, that is, f(n) ≤ 2 · n3 for all n ≥ n0 where g(n) = n3. Growth
of functions f(n), g(n) and 2n3 are of same order. So we write it as f(n) =
O(n3).

Now, recall the time complexity of Algorithm: SSearch (Algorithm 1):

T (n) = 9n+ 5 ≤ 10n ∀n ≥ 5.

Hence, T (n) = O(n) (see Figure 3.1). We can observe that the constants
(values 9 and 5) are not so significant if we consider the order of growth.

Similarly, take f(n) = n2 + 5n+ 10 and g(n) = n2, so,

0 ≤ f(n) ≤ c · g(n), ∀n ≥ n0 ⇒ 0 ≤ n2 + 5n+ 10 ≤ c · n2,∀n ≥ n0

Let’s take c = 2. Then

0 ≤ n2 + 5n+ 10 ≤ 2n2, ∀n ≥ 7;



n

f(n)

c · g(n)

f(n)

n0

Figure 3.1: Growth of Function for Big-oh (O) Notation

that is, here n0 = 7. So f(n) is an element of the set O(n2). Now, consider
T ′′(n) = n2 + 9n log n+ n log log n

then also,
T ′′(n) = O(n2).

If we are satisfied with asymptotic notation and approximate analysis, we
can avoid writing program on RAM model. Then we assume that a step of
an algorithm take a constant amount of time when it runs of some computer.
When machine changes, only the values of constant changes, but it remains
as constant.

Complexity Analysis using Big-oh Notation

Let us now analyse the time complexity of Algorithm 1 (Page 3) in worst
case without referring to model of computation.
Let Step 1 takes c1 amount of time.

Step 2 takes c2 amount of time.
Step 3 takes c3 amount of time.
Step 4 takes c4 amount of time.

Observe that, only once out of the n times, Step 4 gives an output. However,
ignoring this minute difference we assume that Step 4 always takes c4 amount
of time. Hence, the total time required in the worst case is

T (n) = c1 + (c2 + c3 + c4)n.
= c · n+ c1 where c = c2 + c3 + c4
= n(c+ c1

n
)

≤ n · (c+ c1), ∀n ≥ 1
= c0 · n, ∀n ≥ n0 where c0 = c+ c1, n0 = 1

i.e. T (n) = O(n).



More on Big-oh Notation

In analysis of algorithm, we are interested in higher values of input size n,
so, Big-oh notation is important. Big-oh notation represents upper bound of
a function. That is, if f(n) = O(g(n)) then g(n) is an upper bound of f(n).

Example 1 f(n) = akn
k + ak−1n

k−1 + · · · + a1n + a0, ak > 0 and other
coefficients of the polynomial are nonnegative. Prove that f(n) = O(nk).
Ans. f(n) = nk(ak +

ak1
n

+ · · ·+ a1
nk−1 +

a0
nk )

≤ nk · (ak + ak−1 + · · ·+ a1 + a0), ∀n ≥ 1
= A · nk where A = ak + ak−1 + · · ·+ a1 + a0

Clearly, f(n) ≥ 0. So, 0 ≤ f(n) ≤ A · nk, ∀n ≥ 1⇒ f(n) = O(nk).

Example 2 Are O(n2+n) ≡ O(n2) and O(N+M) ≡ O(Max(N,M)) true?
Ans. Both are true. In O-notation, we interpret ‘+’ as ‘Max’.

Example 3 Let f(n) and g(n) be two non-negative functions. Prove that,
1. max (f(n), g(n)) = O(f(n) + g(n));
2. if f(n) = O(g(n)) and g(n) = O(h(n)), then f(n) = O(h(n));
3. O(f(n) + g(n)) = O(f(n)), if f(n) is the maximum of both.

Ans. 1 If f(n) and g(n) are two non-negative functions, then
max (f(n), g(n)) = f(n) if f(n) > g(n)

or, = g(n) if g(n) > f(n).
Therefore, max (f(n), g(n)) ≤ c · (f(n) + g(n)), if f(n) and g(n) are non-

negative functions and c = 1. That is,

max (f(n), g(n)) = O(f(n) + g(n)).

Ans. 2
f(n) = O(g(n))⇒ f(n) ≤ c1 · g(n), ∀n ≥ n1

g(n) = O(h(n))⇒ h(n) ≤ c2 · h(n), ∀n ≥ n2

where c1, c2, n1, n2 are positive constants. Therefore,

f(n) ≤ c1 · g(n) ≤ c1 · c2 · h(n) = c · h(n), ∀n ≥ max (n1, n2),

where c = c1 · c2. That is,

f(n) = O(h(n)).



Ans. 3 (f(n) + g(n)) = f(n) · (1 + g(n)
f(n)

)

≤ f(n)(1 + 1) = 2f(n) as f(n) > g(n).
Therefore, O(f(n) + g(n)) = O(f(n)) if f(n) is the maximum.

Here c, n0 can be any positive integer. So, can we say
• n = O(n2)? – Yes, as 0 ≤ n ≤ c · n2 for c = 1 and n0 = 0.
• n2 = O(n)? – No, because, here the relation 0 ≤ n2 ≤ c · n has to be

satisfied for all n ≥ n0, but, for whatever be the value of c, n0, after
some time n2 will cross c · n.

O(n3)

O(n2)

O(n)

.

.

.

.

.

.

Figure 3.2: Hierarchy of Sets in Big-oh Notation

Therefore, behaviour of growth for any function can not be changed by choos-
ing c & n0 and these two values are related. When we increase c then n0

decreases and vice versa. Also observe that, n = O(n), n = O(n2), n = O(n3)
and so on. Hence,

O(n) ⊂ O(n2) ⊂ O(n3) ⊂ · · ·
Similarly, O(n) ⊂ O(n2) ⊂ O(n2 log n) ⊂ · · ·

Therefore, although Big-oh notation gives upper bound of a function, this
upper bound is not asymptotically tight (see Figure 3.2).

3.2.2 Big-Omega Notation
To understand the lower bound of a function in the analysis of algorithm,
Donald Knuth proposed Big-omega (Ω) notation.

Definition 3 Ω(g(n)) = {f(n) : there exist two positive constants c and n0

such that 0 ≤ c · g(n) ≤ f(n), ∀n ≥ n0}



This represents that, the value of the function f(n) can never be lower than
the value of c · g(n) whenever n ≥ n0 (see Figure 3.3).

n

f(n) f(n)

c:g(n)

n0

Figure 3.3: Growth of Function for Big-omega (Ω) Notation

Let f(n) = 2n + 1 and g(n) = n. Here g(n) < f(n) for all n ≥ 0.
Hence we can say f(n) = Ω(n). However, is f(n) = 2n + 1 = Ω(n2), that
is, 0 ≤ c · n2 ≤ 2n + 1 true for all n ≥ n0? No, because, for any c, n2

will exceed 2n + 1 after some time, that is, n0 does not exist. Now take,
f(n) = 2n2 + n+ 1. Is f(n) = Ω(n) true? Here, obviously it is true. So,

Ω(n) ⊃ Ω(n2) ⊃ Ω(n2 log n) ⊃ Ω(n3) · · ·

Ω(n2)

Ω(n3)

Ω(n)

.

.

.

Figure 3.4: Hierarchy of Sets in Big-omega Notation

Although Big-omega (Ω) notation shows the lower bound of a function,
like Big-oh notation,it is also not an asymptotically tight lower bound (see
Figure 3.4).

Example 4 Consider f(n) = akn
k+ak−1n

k−1+ · · ·+a1n+a0, where ak > 0
and other coefficients are non-negative. Prove that f(n) = Ω(nk).



Ans. We have to show that there exists c, n0 such that 0 ≤ c.nk ≤ f(n), ∀n >
n0. Now,

f(n) = akn
k + ak−1n

k−1 + · · ·+ a1n+ a0
≥ ak · nk ∀n ≥ 0 [as the coefficients are non-negative and

ak > 0]
Hence, f(n) = Ω(nk).

3.2.3 Big-Theta Notation
We have mentioned that O-notation and Ω-notation are not asymptotically
tight. f(n) = O(g(n)) ; g(n) = O(g(n)), for example, n = O(n2), but
n2 6= O(n). A bound is called ‘tight’ for a function if upper bound of it is
equal to the lower bound in terms of asymptotic notation.

In complexity analysis, it is always desirable to find the tight bound of the
function. To represent asymptotically tight bound, Big-theta (Θ) notation
was introduced by Donald Knuth.
Definition 4 Θ(g(n)) = {f(n) : there exist three positive constants c1,c2
and n0 such that 0 ≤ c1 · g(n) ≤ f(n) ≤ c2 · g(n) ∀n ≥ n0}
f(n) = Θ(g(n)) if it is bounded both sides by c1.g(n) and c2.g(n) for all
n ≥ n0 (see Figure 3.5).

n

f(n)
c1:g(n) f(n)

c2:g(n)

n0

Figure 3.5: Growth of Function for Big-theta (Θ) Notation

Theorem 1 : f(n) = Θ(g(n)) if and only if f(n) = O(g(n)) and f(n) =
Ω(g(n)).
Proof : Let us first assume that f(n) = Θ(g(n)). Then, by definition,
there exists three positive constants c1, c2 and n0 such that

0 ≤ c1 · g(n) ≤ f(n) ≤ c2 · g(n), ∀n ≥ n0 (3.1)



So, from Equation 3.1, we can say that

0 ≤ c1 · g(n) ≤ f(n), ∀n ≥ n0 (3.2)

and
0 ≤ f(n) ≤ c2 · g(n), ∀n ≥ n0 (3.3)

Therefore, from Equation 3.3, f(n) = O(g(n)) and from Equation 3.2, f(n) =
Ω(g(n)).

Conversely, let f(n) = O(g(n)) and f(n) = Ω(g(n)). Now, f(n) =
O(g(n)) ⇒ there exists two positive constants c2, n2 such that 0 ≤ f(n) ≤
c2 · g(n), ∀n ≥ n2. Whereas, f(n) = Ω(g(n)) ⇒ there exists two positive
constants c1, n1 such that 0 ≤ c1 · g(n) ≤ f(n), ∀n ≥ n1.
Therefore, 0 ≤ c1 ·g(n) ≤ f(n) ≤ c2 ·g(n), ∀n ≥ n0, where n0 = max (n1, n2).
That is, f(n) = Θ(g(n)). �

For example, 2n3 +5n2 +12n = Θ(n3). In algorithm analysis, we mainly
use Θ-notation which depicts both the upper and lower bound of a function.

Example 5 Let f(n) and g(n) be two functions. Prove that, max (f(n), g(n)) =
Θ(f(n) + g(n)).
Ans.

max (f(n), g(n)) ≤ (f(n) + g(n)), ∀n ≥ 1 (3.4)

Now, if f(n) ≥ g(n) ∀n ≥ n0, that implies, 2f(n) ≥ (f(n) + g(n)) ∀n ≥ n0,
that is, f(n) ≥ 1

2
(f(n) + g(n)) ∀n ≥ n0. Therefore,

max (f(n), g(n)) ≥ 1

2
(f(n) + g(n)), ∀n ≥ n0 (3.5)

Similarly, if f(n) ≤ g(n) ∀n ≥ n0 then also,

max (f(n), g(n)) ≥ 1

2
(f(n) + g(n)), ∀n ≥ n0 (3.6)

Combining Equations 3.4, 3.5 and 3.6, we get that

max (f(n), g(n)) = Θ(f(n) + g(n))



3.2.4 Other Asymptotic Notations
There are two more notations – o (small-oh) and ω (small-omega). These are
used to represent not-tight upper and lower bounds of functions respectively.

Definition 5 o(g(n)) = {f(n) : for any constant c > 0, there exists another
constant n0 such that 0 ≤ f(n) < c · g(n), ∀n ≥ n0}

So, 2n2 6= o(n2) but 2n = o(n2). Intuitively we understand that if f(n) =
o(g(n)), then f(n) is insignificant compared to g(n) when n approaches to
larger values. That is,

lim
n→∞

f(n)

g(n)
= 0

.

Definition 6 ω(g(n)) = {f(n) : for any constant c > 0, there exists another
constant n0 such that 0 ≤ c · g(n) < f(n), ∀n ≥ n0}

Hence, n2 = ω(n) but n 6= ω(n2). Whenever f(n) = ω(g(n)), then we get

lim
n→∞

f(n)

g(n)
=∞

if limit exists.
Here the term for any constant is important. These notations are also

not tight bound. They are used rarely in analysis of algorithms.

3.3 Benefits of Asymptotic Notation
Using asymptotic notation to find the complexity of an algorithm offers the
following benefits:

1. Simplifies complexity expression; so, time and space complexity can be
represented in a simplified manner.

2. Though it is approximation, but it can reflect the proper rate of growth
of the functions.

3. We need not to develop code on a machine for finding the time and
space complexity anymore; rather we shall be able to derive them di-
rectly in terms of asymptotic notation.



However, model of computation is not nullified by the use of asymptotic no-
tation. Actually we always use the model of computation to find the time
complexity. But, we do so in our mind to calculate approximate time.

Remark: Base of log does not matter under asymptotic notations. Sup-
pose that f(n) = O(g(n)) and g(n) = n log2 n. Then f(n) = O(n log2 n).
However,

n log2 n = n. log2 b. logb n

for any b > 0. Here log2 b is a constant. So we can write f(n) = O(n logb n).
Since b is any base, we avoid to mention base of log within asymptotic nota-
tions.



Chapter 4

Recurrence relation

Complexity can sometime be expressed as a recurrence relation. To express
complexities in asymptotic notations, these recurrence relations are to be
solved. For solving them, there are some standard methods:

1. Unrolling the recurrence,

2. Substitution method,

3. Recursion-tree based method, and

4. Master method

4.1 Unrolling a recurrence
Many times, the easiest way to solve a recurrence is to unroll it to get a
summation. This method works fine for comparatively simple recurrence
relation. Let us take following recurrence relation:

T (n) =
{ c if n = 1

cn+ 2T (n
2
) if n ≥ 2

(4.1)

We can solve this relation by unrolling the recurrence step by step:
T (n) = cn+ 2T (n

2
)

= cn+ 2[cn
2
+ 2T ( n

22
)]

= 2cn+ 22T ( n
22
)

= 3cn+ 23T ( n
23
)

25



...
= kcn+ 2kT ( n

2k
)

Let us first assume that n = 2k. This implies, k = log2 n.
∴ T (n) = cn log2 n+ nT (1)

= cn log2 n+ cn
= cn log2 n(1 +

1
log2 n

)

≤ 2cn log2 n ∀ n ≥ 2
∴ T (n) = O(n log n)
Now if 2k−1 < n < 2k, then T (n) < T (2k), and so T (n) = O(n log n). Hence
for any n, upper bound of T (n) is O(n log n). Following similar argument,
one can show that T (n) = Ω(n log n).

4.2 Substitution method
In this method, a solution to the given recurrence relation is guessed. Then,
it is shown by induction that the assumption is correct. However, there
is no fixed way to guess the solution. If we fail to prove that a guess is
correct, then we go for next (better) guess. For example, we might assume
the solution of Recurrence 4.1 as T (n) ≤ cn. We would then assume it holds
true inductively for n < n (the base case is obviously true) and plug in to
our recurrence (using n′ = n

2
) to get:

T (n) = cn+ 2T (n
2
)

≤ cn+ 2c.n
2

= cn+ cn
= 2cn

Obviously, this is not what we wanted: T (n) is less or equal to 2cn but
we guessed it as less or equal to cn. Hence, our guess is wrong.

Let’s make now new guess: T (n) ≤ 2cn log2 n. If we assume that our new
guess holds inductively for n

2
, then substituting into Relation 4.1 we get:

T (n) = cn+ 2T (n
2
)

≤ cn+ 2.2c.n
2
. log2

n
2

= cn+ 2cn(log2 n− 1)
= 2cn log2 n− cn
≤ 2cn log2 n [∵ c > 0, n ≥ 0]

Hence, our guess is verified and we get that T (n) = O(n log n).



It is important in this type of proof to be very careful. For instance, one
might think that our first guess is correct as c and 2c both are constants.
But this is wrong!

Although this method is very powerful and mathematically sound, but
there is no way to guess the correct solution.This is the challenge of using
this method.

4.3 Recursion-tree based method
This is a standard method to solve a recurrence relation. Sometime this
method is used to guess the solution, and then substitution method is used
to confirm it.

In this method, a tree is formed considering non-recursive part as node
of the tree. The root of the tree is the non-recursive elements of the original
expression. If the expression has k number of recursive elements, then the
root has k children, each of which represents one recursive element. Now,
each child is further extended with same recurrence relation considering lesser
n. In this way, tree is formed. Finally leaves contains the constant part.

To find out solution, we add the content of nodes of each level and then
sum up the cost of all levels which give us solution to the recurrence relation.
Consider Recurrence 4.1 to illustrate this method:

c.n

c.n/2 c.n/2

c.n/4 c.n/4 c.n/4 c.n/4

T(1) T(1) T(1) T(1)

h

Figure 4.1: Recursion-Tree based method

Here we get a recurrence tree. Observe that summation of costs at each
level is cn. Our next target is to find the hight (h) of the tree. If n = 2h,
then h = log2 n. But if 2h−1 < n < 2h, then h = O(log n). Hence, total cost
of the tree is h.c.n, which implies that T (n) = h.c.n. = O(n log n).



As another example, consider that

T (n) ≤ T (
9n

10
) + T (

n

10
) + c.n

. Let us now construct the recurrence tree against this relation.

c.n

c.
n

10
c.

9n

10

c.
81n

100
c.

9n

100
c.

9n

100
c.

n

100

T(1)

T(1)

h1

h2

Figure 4.2: Recursion-Tree based method

This recurrence tree always remains unbalanced. One part of the tree
reaches to the leaves faster than other part. In the above tree, h1 is the
highest number of levels from the root, whereas h2 is smallest number of
levels from root to leaves. Up to h2 levels, summation of cost of each level is
cn. Here

h1 = log 10
9
n and h2 = log10 n.

∴ T (n) ≤ c.n.h1 = c.n. log 10
9
n. This implies that T (n) = O(n log n)

Similarly, we can write T (n) ≥ c.n.h2 = c.n. log10 n, which gives us
T (n) = Ω(n log n).

4.4 Master theorem
The Master Theorem provides us ready-made solutions to the following type
of recurrence relations:

T (n) = aT (
n

b
) + f(b)

where a ≥ 1 and b > 1 are constants and f(n) is an asymptotically positive
function.



Theorem 2 : For the recurrence T (n) = aT (n
b
) + f(n) with a ≥ 1, b > 1,

T (n) is asymptotically bounded as follows.

1. If f(n) = O(nlogb a−ε) for some constants ε > 0, then T (n) = Θ(nlogb a).

2. If f(n) = Θ(nlogb a), then T (n) = Θ(nlogb a log n).

3. If f(n) = Ω(nlogb a+ε) for some constants ε > 0, and if af(n
b
) ≤ cf(n) for

some constant c < 1 and all sufficiently large n, then T (n) = Θ(f(n)).

For Recurrence 4.1, a = b = 2 and f(n) = cn. We can use the master
theorem to solve it, and here f(n) = Θ(nlogb a). So T (n) = Θ(n log n).
Following is a corollary which we directly get from the above theorem.

Corollary 1 The recurrence T (n) = aT (n
b
) + cnk where a ≥ 1, b > 1, c >

0, k ≥ 0 are constants solves to

1. T (n) = Θ(nk) if a < bk

2. T (n) = Θ(nk log n) if a = bk

3. T (n) = Θ(nlogb a) if a > bk

It is always advised to use master theorem that if the given recurrence
relation is like T (n) = aT (n

b
) + f(n) and follows the stated conditions.



Chapter 5

Searching Problem - continued

Let us re-look at the Searching Problem. An algorithm, named Sequential
Search Algorithm, for the problem has been developed. We have shown
that worst case time complexity of the algorithm is Θ(n) (see page 16 and
page 17). Although other algorithms, such as Binary Search have been devel-
oped which run much faster than Sequential Search, we cannot avoid need of
this algorithm in several applications due to several reasons. Here question
is, can we make the sequential search faster? Answer is Yes!

5.1 Quick Sequential Search
Let us re-look at Sequential Search Algorithm (page 3). There are some types
of operations such as assignment (Step 1), increment (Step 3), comparison
(Step 2 and Step 4), jump (Step 4). If we consider any standard computer
architecture, we can see that assignment, increment, jump are comparatively
less time consuming operation than the comparison. Let us recall the ex-
pression for time complexity in the worst case (see page 17).

T (n) = c1 + (c2 + c3 + c4)n

As c1 is small and executed only once in the algorithm, we can write

T (n) ≈ (c2 + c3 + c4)n

Further, c2 ≈ c4 as both are primarily comparison. So,

T (n) ≈ (2c2 + c3)n

30



That is, major contribution to the time complexity is from comparison op-
eration. We can see that in each iteration of the algorithm, there are two
comparisons. In general, if we can reduce the number of instructions to be
executed, an algorithm becomes faster. Here, if we can reduce the number
of comparisons in worst case, we can improve the time complexity. Let us
target to do that.

Let us insert the search key at the end of the list. Then, the comparison
of Step 2 will be successful for at least once, and consequently we can bring
the Step 4 outside of the loop. Following is the algorithm.

Algorithm 2 QuickSSearch
Input: A list of records R1, R2, · · · , Rn identified by keys K1, K2, · · · , Kn

respectively; K (Search Key).
Output: ‘YES’ if the record exists; ‘NO’ otherwise.
Step 1: i← 1, Kn+1 ← K
Step 2: If K = Ki, go to Step 4.
Step 3: i← i+ 1; go to Step 2.
Step 4: If i ≤ n, output ‘Yes’; Otherwise output ‘No’.

In this algorithm, observe that Steps 2 and 3 are repeatedly executed
and there is only one comparison. In worst case, Step 2 is executed n + 1
times and Step 3 n times.Whereas in the original algorithm (page 3), Step 2
and Step 4 are executed n times. If we consider only comparison operation
then 2n comparisons are needed in original algorithm, but its quick version
demands only n + 1 comparisons. So, from number of comparisons point of
view, this new algorithm is two times faster than the original!

5.2 Failure of Asymptotic Notations
Although asymptotic notations are very useful to express complexity of an
algorithm, complexity with asymptotic notations does not always reflect the
accurate performance of the algorithm. If we find out time complexity of
Algorithm QuickSSearch (Algorithm 2), we can easily see that it is Θ(n).
Time complexity of Algorithm SSearch (Algorithm 1) is also Θ(n). Hence,
performance of both the algorithms is asymptotically same. But are they
same?



Previous discussion reveals that Algorithm QuickSSearch is much better
than Algorithm SSearch. Therefore, when performance of two algorithms are
asymptotically same, then which one is really better cannot be understood
from their asymptotic complexity. In that case, performance of an algorithms
on some particular machine are to be analyzed. That is, programs against
those algorithms are to be carefully developed and with more care, time (and
space) requirement of those programs are to be analyzed. This analysis is
particularly needed when we develop real-life software.

It is also to be noted here that architecture of computing machine is very
important while we analyze the performance of algorithms. Instruction set,
performance of individual instructions, configuration of the machine are to
be considered for more accurate analysis of algorithms.

5.3 Binary Search
Let us now consider that the input list is sorted. That is, if K1, K2, · · · , Kn

are keys of n consecutive records, then K1 ≤ K2 ≤ · · · ≤ Kn. Under this
constraint, we can develop a new algorithm, named Binary Search Algorithm
which is asymptotically better than Sequential Search Algorithm.

For binary search, we divide the problem of size n in two sub-problems
of size about n

2
each. We check if the middle record is the target record. If

not and if the search key is less than middle key, we search for the key in left
sub-problem. Otherwise, we search it in the right sub-problem. And then
we repeat the same process until the record is found or the sub-problem size
becomes zero.

n

2

n

2

n

The approach taken here is called Divide-and-Conquer, which is a classi-
cal approach of developing an algorithm.

Divide-and-Conquer Method: This method says that to solve a problem,
divide it to get sub-problems. Then divide the sub-problems to get subsub-
problems. This process is repeated until we get sufficiently small problems



which can easily be solved. Then combine the smaller solutions to get the
final solution of the problem.

In science, this approach is known as Cartesian approach. René Descartes,
a French philosopher of sixteenth century and mathematician, advocated this
approach for scientific discovery. This approach contributed a lot in the de-
velopment of modern science. A good example of scientific discovery using
this approach is Newton’s Principia. Although this approach has been chal-
lenged in recent times after the advent of Chaos theory, it is still dominating
way of scientific investigation.

Let us now write down the binary search algorithm.

Algorithm 3 BSearch
Input: A list of records R1, R2, · · ·Rn identified by keys K1, K2, · · · , Kn

respectively where K1 ≤ K2 ≤ · · · ≤ Kn; K (Search Key).
Output: ‘YES’ if the record against exists and ‘NO’ otherwise.
Step 1: l← 1, u← n.
Step 2: If l > u then output ‘NO’ and exit; otherwise mid← b l+u

2
c.

Step 3: If K = Kmid then output ‘YES’ and exit.
If K < Kmid then goto Step 4.
Otherwise go to Step 5.

Step 4: u← mid− 1; go to Step 2.
Step 5: l← mid+ 1; go to Step 2.

We next analyze the time complexity of the algorithm. Let us assume
the following.

Step 1 takes c1 time.
Step 2 takes c2 time.
Step 3 takes c3 time.
Step 4 takes c4 time.
Step 5 takes c5 time.

Here c4 = c5 since Step 4 and Step 5 contain similar operation. Step 2, Step
3 and Step 4/Step 5 are executed repeatedly (recursively). Like previous
algorithm, the worst case for this algorithm is that the search key does not
exist in the list. Assume that Step 2, Step 3 and Step 4/Step 5 are executed
k times in worst case. Hence, time complexity of this algorithm is

T (n) = c1 + (c2 + c3 + c4)k



This k depends on n. We can also express T (n) by recurrence relation.

T (n) =

{
c if n = 1
c+ T (n

2
) if n ≥ 2

Here, c is a constant that represents the time required for execution of single
pair of (l, u).

This recurrence relation can be solved simply by unrolling it.
T (n) = c+ T (n

2
)

= c+ [c+ T n
22
]

= 2c+ T ( n
22
)

= 3c+ T ( n
23
)

...
= kc+ T ( n

2k
)

Let n = 2k, which implies, k = log2 n. So, we get
T (n) = c. log2 n+ T (1)

= c.log2n+ c [∵ T (1) = c]
= c. log2 n.(1 +

1
log2 n

) ≤ 2c log2 n ∀ n ≥ 2

∴ T (n) = O(log n)
Now if 2k−1 < n < 2k, then also one can show that T (n) = O(log n).

Note: The base of log does not matter under asymptotic notation. Change
of base actually affects an expression by constant term. Since constant terms
are avoided in asymptotic notation, we can avoid mentioning of base of log.
So, we can write for the above T (n) = O(log n)

We can easily find out number of comparisons needed in this algorithm
for successful and unsuccessful search.

Theorem 3 : If 2k−1 ≤ n < 2k, a successful search of Algorithm 3 requires
(min 1,max k) comparisons. If n = 2k − 1, an unsuccessful search requires k
comparisons; and if 2k−1 ≤ n < 2k− 1, an unsuccessful search requires either
kl − 1 or k comparisons.

5.4 Successful search: comparison
Performance of the above two algorithms are measured for the worst case,
when the search key is absent in the list. If the search is successful, that is,



if the search key is present in the list, then which of the above two performs
better?

To answer this question, we have to know that after how many key com-
parisons, the target key is reached. And in that case, it cannot be blindly
said that binary search is better than sequential search! Although we have
TBinary = Θ(log n) and TSeq = Θ(n) in worst case, sometime sequential search
can perform better in successful search case.

Let us consider that pi is the probability of accessing the ith record. Ob-
viously, in successful case,

p1 + p2 + · · ·+ pn = 1

Then the expected number of comparisons required is

Cn = p1 + 2p2 + · · ·+ npn (for a successful search)

Now if we assume that p1 = p2 = · · · = pn = 1
n
, then Cn = n+1

2
. This

is not very realistic assumption. Probability of access of records generally
differs. Let us now organize the records in a different way. Suppose that the
most frequently searched record is placed in first location, the second most
frequently searched record is placed in second location, and so on. Hence here
p1 > p2 > · · · > pn. Under this assumption sequential search can perform
very well.
Let us hypothetically assume that p1 = 1

2
, p2 = 1

4
, · · · pn−1 =

1
2n−1 , pn = 1

2n−1 ,
which satisfy the following: p1 + p2 + · · ·+ pn = 1. Then,

Cn = 1
2
+ 2. 1

22
+ 3. 1

23
+ · · ·+ (n− 1) 1

2n−1 + n. 1
2n−1

= (1
2
+ 1

22
+ 1

23
+ · · ·+ 1

2n−1 +
1

2n−1 ) + ( 1
22

+ 2. 1
23

+ · · ·+ n−2
2n−1 +

n−1
2n−1 )

= 1 + 1
2
(1
2
+ 2. 1

22
+ · · ·+ (n− 2). 1

2n−2 +
n−1
2n−2 )

= 1 + 1
2
(Cn − 1

2n−1 )

2Cn = 2 + Cn − 1
2n−1 ⇒ Cn = 2− 1

2n−1

That is, expected number of comparison is constant! Hence its perfor-
mance on average is very good.This discussion indicates that to understand
the performance of algorithms on an average, we need to know the distribu-
tion of the input data. For the development of real-life software this is very
important.



5.5 Fibonacci Search
Fibonacci search is an alternative to binary search. Here also we assume
that records are sorted in increasing order. The algorithm implicitly form
Fibonacci tree for searching records. The algorithm uses only addition and
subtraction (but no division), which may be advantageous to some systems.

A Fibonacci tree of order k has Fk+1− 1 internal nodes (circle) and Fk+1

external nodes (box). Figure 5.1 is a Fibonacci tree of order 6. Following is
the method of constructing the tree.

If k = 0 or k = 1, the tree is simply 0 .

If k ≥ 2, the root is Fk; the left subtree is the Fibonacci tree of order
k − 1; and the right subtree is the Fibonacci tree of order k − 2 with
all numbers increased by Fk.
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Figure 5.1: Fibonacci tree of order 6

Except the external nodes, the numbers of two children of each internal
node differ from their parent’s number by the same amount, and this amount
is a Fibonacci number. For example, 5 = 8−F4 and 11 = 8+F4 in Figure 5.1.
While the difference is Fj, the corresponding Fibonacci difference for the
next brach on the left is Fj−1, while on the right it skips down to Fj−2. For
example, 3 = 5− F3 while 10 = 11− F2.



Let us now combine these observations to reach to the following algorithm
for recognising the external nodes. Here we have assumed that n + 1 is a
Fibonacci number.

Algorithm 4 FibonacciSearch
Input: A list of records R1, R2, · · ·Rn identified by keys K1, K2, · · · , Kn

respectively where K1 ≤ K2 ≤ · · · ≤ Kn; K (Search Key).
Output: ‘YES’ if the record against exists and ‘NO’ otherwise.
Step 1: i← Fk, p← Fk−1, q ← Fk−2 (Here p and q are consecutive Fibonacci
numbers)
Step 2: If K = Ki then output ‘YES’ and exit.

If K < Ki, go to Step 3; otherwise go to Step 4.
Step 3: If q = 0, then output ‘NO’ and exit; otherwise set (i, p, q) ← (i −
q, q, p− q); then return to Step 2.
Step 4: If p = 1, then output ‘NO’ and exit; otherwise set i← i+q, p← p−q
and then q ← q − p; and return to Step 2.

Like Binary Search, this algorithm follows divide-and-conquer strategy
and its worst case time complexity is also O(log n). However, unlike Binary
Search, the input list is divided into unequal parts.

5.6 Binary Search Tree
Binary Search and Fibonacci Search use an implicit binary tree structure to
efficiently search an element from the given list of records. Both the algo-
rithms, however, demand a sorted list as input. These algorithms are appro-
priate mainly for fixed-size lists. If the records change dynamically, then we
need to maintain the list sorted every time, which is generally expensive.

The Binary Search Trees (BSTs) are explicitly binary trees that allow to
search elements efficiently like before, and additionally makes it possible to
easily insert and delete records from the tree. BSTs are formed dynamically.If
an element is not present in the tree, the element is inserted into it. Let us
consider following sequence of keys as input: 30, 20, 45, 47, 15, 9, 25, 17, 35.
As 30 is the first key, it forms the root of the tree. Next 20 is searched in
left side of the tree. But it is not in tree, so inserted as left child of the root.
Similarly 45 is unsuccessfully searched, and inserted as right child. And so
on. Following is the structure. Observe that the tree is growing dynamically.



30

20

15

9 17

25

45

35 47

We exclude the details of BST algorithms, but can derive its complexity
from the above discussion. Searching complexity depends here on the struc-
ture of BST and the search key. If the BST is almost complete, then there
are O(log n) levels. In that case, searching complexity is O(log n). In fact,
here the average case complexity is O(log n). However, worst case scenario is
different. Suppose the input list is sorted. Then the BST becomes a linked
list. So searching in the linked list is O(n) when the search key is absent. In
fact, the searching then becomes sequential search.

To avoid this worst case scenario, balanced trees have been introduced.
In case of balanced trees, the leaves are almost at same level. If this kind
of search trees can be developed, then the searching complexity is O(log n),
even in worst case. AVL trees are such balanced trees. We also omit here
details of AVL tree formation. However, we shall come back to the balanced
trees when we shall discuss about external searching (see page 65).



Chapter 6

Sorting Problem

Sorting Problem is a class of Permutation Problem. In a permutation prob-
lem, one has to find a permutation of input data so that some given condition
is satisfied. In case of sorting problem, a list of records R1, R2, · · · , Rn, iden-
tified by keys K1, K2, · · · , Kn respectively is given. Then, one has to find a
permutation Π such that KΠ(1) ≤ KΠ(2) ≤ · · ·KΠ(n). Following is an example
permutation of 4 elements.

Π =

(
1 2 3 4
2 1 3 4

)
Here Pi(1) = 2,Π(2) = 1,Π(3) = 3,Π(4) = 4. Permutations are bijective
functions. If there are n elements then the total number of permutations is
n!. Permutations problems are very difficult to solve, because if we are asked
to find a particular permutation from a huge pool of possible permutations,
it will take exponential time in general. However, the good news regarding
this is that we have faster algorithms for solving Sorting Problem.

Sorting problem does not find only the correct permutation, but also re-
organizes the records according to the desired permutation. Following is the
problem statement:

Problem Statement: Given a list of records R1, R2, · · · , Rn, identified by
keys K1, K2, · · · , Kn respectively, rearrange the records as R′

1, R
′
2, · · · , R′

n

such that K ′
1 ≤ K ′

2 ≤ · · · ≤ Kn.

That is, the records are to be sorted in ascending order. Records can
also be sorted in descending order. By sorting, however, we shall mean here
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sorting in ascending order.
We classify the sorting techniques based on their way of functioning as

following:

1. Sort by Insertion
2. Sort by Exchange
3. Sort by Selection
4. Sort by Merging
5. Sort by Special Purpose Technique.

6.1 Sort by Insertion
Insertion of a record in its relatively right position is the primary operation
in this class of technique.

6.1.1 Straight Insertion Sort
Straight insertion sort (or, simply “Insertion sort”) follows the rule of playing
cards. Initially the first record is considered as sorted sublist. The next record
is placed in proper position of the sublist so that it remains sorted. This
procedure is repeated until all records are covered. Let j be used to point
the element that will be inserted into the sorted sublist. Another variable i
is used to find the proper location where Kj is to be inserted. Following is
an example.

215 300 19 195 255

215 300 19 195 255

19 215 300 195 255

19 195 215 300 255

19 195 215 255 300

j

j

j

j

Algorithm 5 StraightInsertionSort
Algorithm: SISort
Input: A list of records R1, R2, · · · , Rn identified by keys K1, K2, · · · , Kn



respectively.
Output: Records are in n on-decreasing order.
Step 1: Repeat Step 2 to Step 5 for j = 2, 3, · · · , n.
Step 2: i← j − 1,K ← Kj,R← Rj.
Step 3: If K ≥ Kj go to Step 5.
Step 4: Ki ← Ki−1,Ri ← Ri−1,i← i− 1. If i > 0, then go to Step 3.
Step 5: Ki ← K,Ri ← R .

Time Complexity: Step 1 has increment and assignment. Let Step 1 costs
c1. Likewise, let Step 2 costs c2, Step 3 costs c3, Step 4 costs c4 and Step 5
costs c5.
Best case: Best case of the algorithm is, the list is sorted in ascending order.
Then, Step 4 is not executed. So the time complexity is

TBest(n) = c1 + (c2 + c3 + c5).(n− 1)

which implies TBest(n) = Θ(n).
Worst case: In this algorithm the worst case occurs when the output comes
in the reverse order of the given input i.e. if the input is in descending order
but we want the output in ascending order. In the worst case,
for j = 2, the inner loop will be executed once. So the cost will be (c3 + c4).
for j = 3, the inner loop will be executed twice. So the cost will be 2(c3+c4).
for j = 4, the inner loop will be executed thrice. So the cost will be 3(c3+c4)
and so on.
So, the total cost for the execution of the inner loop will be (c3+ c4)+2(c3+
c4) + · · ·+ (n− 1)(c3 + c4)
For each j, Step 2 and Step 5 will be executed. And at very first Step 1 will
be executed once. Hence the total cost is TWorst(n) = (c3 + c4) + (c2 + c5) +
2(c3 + c4) + (c2 + c5) + · · ·+ (n− 1)(c3 + c4) + (c2 + c5) + c1

= (c3 + c4)
n.(n−1)

2
+ (n− 1)(c2 + c5) + c1

Clearly, it is TWorst(n) = Θ(n2).
Space complexity: Only few variables are required here, and the require-
ment is fixed. So, the space complexity is O(1).

Analysis of the sorting algorithms becomes simpler if we can count only
the number of key comparisons in sorting algorithm. In a general purpose
sorting algorithm, comparisons of keys are the basic operations of ordering
the input records.
Theorem 4 : If a comparison-based sorting algorithm takes k comparisons
to sort the input list, then the time complexity of the algorithm is Θ(k).



Using this theorem, we can find out time complexity of the above algo-
rithm. Here number of key comparisons in worst case is 1+2+ · · ·+n− 1 =
n(n−1)

2
. Hence, T (n) = Θ(n2).

6.1.2 Shell Sort
This sorting technique was proposed by Donald L. Shell in 1959. In this
technique, sublists of 2 elements are first formed. Consider the following
figure with 8 elements. We first form 4 groups.

15 501 215 125 99 101 59 65

k1 k2 k3 k4 k5 k6 k7 k8

If any group is out of order, the next element of the group is inserted
in the first position. As next step, we form sublist/group of 4 elements, by
inserting previously sorted one sublist into another. The list is inserted in
such a way that the final list remains sorted. This process is repeated until
we get a single sorted list.

We group the elements to proceed in the following way.
(K1K5) (K2K6) (K3K7) (K4K8) – in first pass
(K1K5K3K7) (K2K4K6K8) – in second pass
(K1K2K3K4K5K6K7K8) – in third pass

Although its analysis is very difficult and its performance is yet to be
completely understood, it runs faster than Straight Insertion Sort.

6.2 Sort by Exchange
In this family of algorithms, if it is found that two records, when compared,
are out of order, they are swapped. Here “exchange” of location of records
is the primary operation to sort the list.

6.2.1 Bubble Sort
The concept of this method is that the larger element will “bubble up” to
their proper position and when there is no bubble, the process will be ter-
minated. During this process, a larger element exchange its position with its



immediate smaller element. Following example illustrates the process. We
start comparison from lowest two elements. If they are out of order, we in-
terchange their position.Then we compare next two elements and repeat the
process. After one pass, the largest element occupies (“bubble up” to) the
topmost position, which is last position of the given list.
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Algorithm 6 BubbleSort
Input: Records R1, R2, · · ·Rn are given with keys K1, K2, · · · , Kn.
Output: Records are sorted in ascending order based on their keys.
Step 1: BOUND ← n.
Step 2: t← 0. Perform Step 3 for i = 1, 2, · · · , BOUND − 1.
Step 3: If Ki > Ki+1 then Ri ↔ Ri+1 and t← i.
Step 4: If t = 0, terminate the algorithm.

Otherwise BOUND ← t and go to Step 2.

Time Complexity: We shall count number of key comparisons only to find
time complexity of the algorithm (Theorem 4).
Best case: The best case is that the input list is sorted in ascending order.
Then, number of comparison performed by the above algorithm is n−1 only.
So, TBest(n) = Θ(n).

Worst case: The worst case occurs when the input is sorted n descending
order but we want the output in ascending order. In this case, the number of
comparisons is (n−1)+(n−2)+ · · ·+1 = n(n−1)

2
. Hence, TWorst(n) = Θ(n2)



Chapter 7

Quick Sort

We put the Quick Sort algorithm under the family of “Sort by Exchange”.
The idea behind Quick Sort is the following:

• Pick up an element Kp as Pivot Point/Element from the set of keys
K1, K2, · · · , Kn.

• Partition the given list such that all the elements to the left sublist is
less than (or equal to) Kp and all the elements of right sublist is greater
than Kp. Hence, Kp gets its final position after partitioning.

• Repeat the procedure for both the sublist. This process is continued
until the whole list gets sorted.

One may find that the functioning of Quick Sort is very similar to the
Divide-and-Conquer method. But in Quick Sort we make some intelligent di-
vision, whereas in Divide-and-Conquer method the divisions are made blindly
to get smaller sub-problems. We shall see that the Merge Sort follow Divide-
and-Conquer approach. So we love to put this sorting algorithm under Sort
by Exchange family. One point can be said here that this division of fam-
ily is not very clear-cut. For example, in Straight Insertion Sort we do the
exchange operation to insert an element in its proper place.

Although any element can be chosen as pivot point, we classically choose
the first element as pivot in our algorithm.
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7.1 Steps of algorithm
Let us now take an example to show the working principle of Quick Sort.
Following are the elements (keys) which are to be sorted.

512, 139, 612, 52, 739, 239, 550, 600, 700
Here, 512 (the first element) is chosen as the pivot element. Now, we use
two pointers i and j, which point to the elements of left and right sublists
respectively. Initially, i assumes the value 2 whereas j assumes the value n,
and then i increases but j decreases. If Ki ≤ Kp, i increases; otherwise, it
stops. If Kj > Kp, j decreases; otherwise it stops. Then interchange Ki and
Kj (Ri and Rj) if i < j, and then repeat the process until i < j. In this
example, when
i = 2, 139 < 512 i.e. 139 is to be in left sublist, but when
i = 3, 612 ≮ 512 i.e. 612 is to be in right sublist. So, i does not increase.
For the other pointer j, when
j = 9, 512 < 700 i.e. it is to be in right sublist.
j = 8, 512 < 600 i.e. it is to be in right sublist.
j = 7, 512 < 550 i.e. it is to be in right sublist, but when
j = 6, 512 ≮ 239 i.e. the loop will stop here.

The next step is to interchange K3 and K6 (R3 and R6). In this case, we
interchange 612 and 239. So the above list becomes

512, 139, 239, 52, 739, 612, 550, 600, 700
Now, the pointer i resumes its functionality. So, for
i = 4, 52 < 512, so 52 is to be in left sublist, but for
i = 5, 739 ≮ 512. The the loop stops here. Now pointer j resumes its func-
tion. For j = 5, 512 < 739 i.e. 739 is to be in right sublist.
Now, when j decreases, i becomes greater than j. This is the condition of
coming out of loop for partitioning. As a next step, Ki and Kp are inter-
changed. That is, 52 and 512 are interchanged. And, the first pass gets
completed. The result is

[52, 139, 239] 512 [739, 612, 550, 600, 700]
This is the final position of 512 and here two sublists are formed. We next
proceed with a sublist, and the other is pushed in a stack.

Here the question is that which sublist should we choose first? To reduce
Space Complexity we proceed with smaller sublist and put the larger in the
stake. In this case, the left sublist is processed first and the right sublist is
pushed in stack. Hence we get the following during execution



52 139 239 512 739 612 550 600 700

52 139 239 512 739 612 550 600 700

52 139 239 512 700 612 550 600 739

52 139 239 512 612 550 600 700 739

52 139 239 512 550 612 600 700 739

52 139 239 512 550 600 612 700 739

i j

i

pivot

j

Algorithm 7 QuickSort
Input: Records R1, R2, · · ·Rn are given with keys K1, K2, · · · , Kn.
Output: Records are sorted in ascending order based on their keys.
Step 1: l← 1, r ← n, and set the stack empty.
Step 2: i← l, j ← r + 1, K ← Kl.
Step 3: i← i+ 1. If Ki < K then repeat this step.
Step 4: j ← j − 1. If K < Kj then repeat this step.
Step 5: If j ≤ i, interchange Rl ↔ Rj and then go to Step 7.
Step 6: Interchange Ri ↔ Rj and go back to Step 3.
Step 7: If r− j ≥ j − l > 1, push (j + 1, r) on the top of the stack and go to
Step 2.

If j − l > r− j > 1, push (l, j − 1) on the top of the stack and go to
Step 2.
Step 8: If the stack is non-empty, pop its top entry (l′, r′) and then (l, r)←
(l′, r′); return to Step 2.

7.2 Worst and best case
In general, the worst case with respect to time complexity arises if the pivot
is chosen in such a way that all elements in one sublist and the other sublist
is empty. For this algorithm the worst case for time complexity is obtained
when we are given a sorted list. Then in each step there is a completely
unbalanced sublist. The pivot element will remain at one end of the sublist.
For the first element the loop will run for n−1 times, for the second element
the loop will run for n−2 times and so on. Hence the number of comparisons
in worst case is (n− 1) + (n− 2) + ...+ 1 = n(n−1)
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Hence, Tworst = Θ(n2)

This worst case time complexity can also be expressed as: Tworst(n) ≤
Tworst(n− 1) + c.n

The best case for time complexity in Quick Sort is when we get completely
balanced partition for each step. Then best case time complexity is obtained
by Tbest ≤ Tbest(

n
2
) + c.n

i.e. Tbest = Θ(n log n)
However, worst case for space complexity does not match with worst case

for time complexity. In fact, the worst case for space complexity is the best
case for time complexity, and the best case for space complexity is worst case
for time complexity. For space complexity the worst case occurs when we get
completely balanced partition for each step and the best case occurs when
there is sorted list in each step. Then the pivot element will be at one end
of the sublist and we have nothing to put in the stack. Hence we get
Sworst(n) ≤ Sworst(

n
2
) + c⇒ Sworst(n) = Θ(log n)

7.3 Average case analysis
Quick Sort is really quicker! It performs better than other algorithms in
many cases. But this is not reflected in its worst case analysis. The worst
case time complexity is Tworst(n) = Θ(n2) and the best case time complexity
is Tbest = Θ(n log n). If the partitioning of list is unbalanced, the performance
of Quick Sort may get worse. Let us consider a bad partitioning where about
90% of elements are always in one side and the rest 10% is in other side.
Then the time complexity can be expressed as

T (n) ≤ T (
9n

10
) + T (

n

10
) + c.n

This recurrence relation also results in the following solution: T (n) = O(n log n).
Therefore, a very bad partitioning like above also demands only O(n log n)
time. Although for many algorithms, average case is asymptotically as bad
as the worst case, for Quick Sort the scenario can be different. So we go for
average case analysis. We discuss here two (actually three) methods for the
average case analysis.



Method 1:

Let us consider all the inputs are equally probable. Though it is not very
realistic assumption, we do it to simplify the analysis. Let us now develop
Randomized Quick Sort algorithm where pivot point is chosen uniformly at
random. Expected time required by this algorithm is the time requirement
in average case as expectation gives the mean value.

Observe that the algorithm spends most of its time in partitioning the list
(Step 2 to Step 6). The goodness of the algorithm depends on the partition
scheme. So our claim is the number of key comparisons during partition-
ing determines the time complexity of the algorithm. In fact, the keys are
compared only during partitioning of list.

Let X be a random variable which notes the total number of keys compar-
isons. Then the time complexity is Θ(X). Let us denote Kij = {Ki, Ki+1, · · · , Kj}
as a sublist of the given list. How many times two keys can be compared?
– At most once if both of them are in the same sublist and one of them is a
pivot element.

Let Xij be the indicator random variable which indicates whether two
arbitrary keys Ki and Kj (i 6= j) are compared or not. Clearly,

X =
n−1∑
i=1

n∑
j=i+1

Xij

Now, E[X] = E[
n−1∑
i=1

n∑
j=i+1

Xij]

=
n−1∑
i=1

n∑
j=i+1

E[Xij] [by the linearity of expectation]

Let A be an event and I be its indicator random variable. Then

I(A) =

{
1 if A occurs
0 otherwise

Then E[I] = 1.P r{A}+ 0.P r{A} = Pr{A}.
In our case, E[Xij] = Pr{Ki is compared with Kj}. Hence,

E[X] =
n−1∑
i=1

n∑
j=i+1

Pr{Ki is compared with Kj}

Now, Pr{Ki is compared with Kj}
= Pr{Ki or Kj is chosen as pivot}



= Pr{Ki is chosen as pivot}+ Pr{Kj is chosen as pivot}
= 1

j−i+1
+ 1

j−i+1
= 2

j−i+1
[Since the random variable follows uniform distri-

bution, choosing of i is independent from choosing of j and there are j− i+1
elements in the sublist kij]

Hence , E[X] =
n−1∑
i=1

n∑
j=i+1

2
j−i+1

=
n−1∑
i=1

n−i+1∑
k=2

2
k
<

n−1∑
i=1

n∑
k=1

2
k

Here Hn =
n∑

k=1

1
k
= 1 + 1

2
+ · · · + 1

n
is the harmonic series, and we get that

n∑
k=1

1
k
≤

blog2 nc∑
i=0

2i−1∑
j=0

1
2i+j

≤
blog2 nc∑
i=0

2i−1∑
j=0

1
2i

≤
blog2 nc∑
i=0

1 ≤ log2 n+ 1

That is, Hn ≤ log2 n + 1. Hence, we get that E[X] <
n−1∑
i=1

2(log2 n + 1).

This implies that E[X] = O(n log n). That is, the expected value of X is
O(n log n). This proves that the average case time complexity of Quick Sort
algorithm is O(n log n).

Method 2:

We can find out average case time complexity directly from Algorithm 7
(not considering its randomized version). Like before, we assume that all
inputs are equally probable. To get the average time complexity (T (n)) of
the algorithm, we consider all possible partitioning of the list. If the pivot
is the ith smallest element, then T (n − 1) and T (n − i) are the average
time required to sort left and right sublists respectively. Hence, we get the
following relation:

T (n) ≤ cn+
1

n

n∑
i=1

{T (i− 1) + T (n− i)}, if n ≥ 2 (7.1)



Clearly, T (0) = T (1) = b (constant). By expanding the above relation, we
get the following:

T (n) ≤ cn+
2

n
[T (0) + T (1) + · · ·+ T (n− 1)], if n ≥ 2 (7.2)

Now by unrolling the above recurrences, we can get the asymptotic bound
of T (n).
T (n) ≤ cn+ 2

n
[T (0) + T (1) + · · ·+ T (n− 2) + T (n− 1)]

≤ cn+ 2
n
[T (0) + T (1) + · · ·+ T (n− 2) + c(n− 1) + 2

n−1
[T (0) + T (1) + · · ·+ T (n− 2)]]

= cn+ 2c(n−1)
n

+ 2
n
[(1 + 2

n−1
)(T (0) + T (1) + · · ·+ T (n− 2))]

= cn+ 2c(n−1)
n

+ 2
n
.n+1
n−1

)[T (0) + T (1) + · · ·+ T (n− 2)]

≤ cn+ 2c(n−1)
n

+ 2
n
.n+1
n−1

)[T (0) + T (1) + · · ·+ T (n− 3) + c(n− 2)+
2

n−2
[T (0) + T (1) + · · ·+ T (n− 3)]]

= cn+ 2c(n−1)
n

+ 2c(n−2)
n

.n+1
n−1

+ 2
n
.n+1
n−1

. n
n−2

[T (0) + T (1) + · · ·+ T (n− 3)]

= cn+ 2c(n−1)
n

+ 2c(n−2)
n

.n+1
n−1

+ 2c(n−3)
n

.n+1
n−1

. n
n−2

+
2
n
.n+1
n−1

. n
n−2

.n−1
n−3

[T (0) + T (1) + · · ·+ T (n− 3)]

= cn+ 2c(n−1)
n

+ 2c(n−2)
n

.n+1
n−1

+ 2c(n−3)
n−1

.n+1
n−2

+
2(n+1)

(n−2)(n−3)
[T (0) + T (1) + · · ·+ T (n− 3)]

...
≤ cn+ 2c(n−1)

n
+ 2c(n−2)

n
.n+1
n−1

+ 2c(n−3)
n−1

.n+1
n−2

+ 2c(n−4)
n−2

.n+1
n−3

+ · · ·+ 2c
5
.3
4
+

2c
5
.3
4
+ 2(n+1)

4.3
[T (0) + T (1)]

= cn+ 2c(n−1)
n

+ 2c(n+ 1)[ n−2
n(n−1)

+ n−3
(n−1).(n−2)

+ n−4
(n−2).(n−3)

+ · · ·+ 3
5.4

]+
2(n+1)

4.3
.2b

< cn+ 2c(n−1)
n

+ 2c(n+ 1)[ 1
n
+ 1

n−1
+ 1

n−2
+ · · ·+ 1

5
] + 2(n+1)

4.3
.2b

< cn+ 2c(n−1)
n

+ 2c(n+ 1) log2 n+ 2(n+1)
4.3

.2b ∀n ≥ 5

Here 1
n
+ 1

n−1
+ 1

n−2
+ · · ·+ 1

5
< Hn, and we have seen that Hn ≤ log2 n+ 1.

Hence, we can rewrite the above as following:

T (n) < 2cn log2 n+ An+ 2c log2 n+B ∀n ≥ 5

for some constants A and B. This implies that T (n) = O(n log n).

Method 3:

This method follows the same style like the above. It uses Relation 7.2 to
get the average case complexity. In the above method, we have unrolled the



recurrence relations systematically. But here we use Substitution method to
solve the above recurrence relation.

Let us guess that T (n) ≤ kn lnn for n ≥ 2, where k = 2c + 2b. We
prove through induction that our guess is correct. For the base case n = 2,
T (2) ≤ 2c+2b follows immediately. Assume for induction that T (i) ≤ ki ln i
for i ≤ n− 1. Then we get

T (n) ≤ cn+ 4b
n
+ 2

n

n−1∑
i=2

ki ln i

≤ cn+ 4b
n
+ 2

n

∫ n

2
kx lnx dx

= cn+ 4b
n
+ 2k

n
[n

2 lnn
2
− n2

4
− (2 ln 2− 1)]

≤ cn+ 4b
n
+ kn lnn− kn

2

Since n ≥ 2 and k = 2c+ 2b, it follows that

cn+
4b

n
≤ cn+ bn ≤ kn

2
and T (n) ≤ kn lnn

Hence, our guess was correct. This implies that the average case complexity
of the algorithm is O(n log n).



Chapter 8

Sorting Problem - continued

In this chapter we shall discuss two families of sorting algorithms – Sort by
Merging and Sort by Selection.

8.1 Merge Sort
This algorithm follows ‘Sort by Merging’ technique. Merge Sort Algorithm is
a classical example of Divide-and-Conquer method of designing algorithms.

Suppose a list of n elements is given for sorting. Merge Sort algorithm
divides the list into two sublists of length n/2. Each sublist is again dived
into two parts. We repeat this process until we get a smallest sublist of
single element, which is trivially sorted. Next, the sorted lists are merged to
get a new sorted list. Hence, merging is the primary operation by which we
prepare the final list.

Suppose two sorted lists as following are given, which are to be merged.
[212, 319, 512] and [121, 201, 209, 302]

Initially, two pointers i and j point to the first elements of the lists. If Ki ≤
Kj, then Ki is put in a temporary array and i is incremented. Otherwise, Kj

is put in the temporary array and j is incremented.This process is repeated.
If a list gets exhausted, the elements of other list are simply added in the
temporary array. For the above example, the second list exhausted first.
Following is the result after merging:

[121, 201, 209, 212, 302, 319, 512]
If the sizes of sorted lists are k and l, then in worst case max (k, l) key

comparisons are needed. So, the time complexity is O(max (k, l)). In this
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algorithm, we need a temporary array of size k + l to store the sorted array.
We can write recursive method for Merge Sort. The list of n elements

are divided into two sublists of length n
2
. From the first sublist we get a

sorted list, say A1 and from the second sublist get a sorted sublist, say A2.
Then these two sublists are merged to get the final list. For this method, the
worst and best cases against space and time are asymptotically same. Time
complexity of the algorithm can be expressed as

T (n) = 2T (
n

2
) +O(n)

That is, T (n) ≤ 2T (n
2
) + c.n for some c. This implies, T (n) = O(n log n).

Space complexity for the best and worst cases of this algorithm is O(n).

Quick and Merge sort: In case of Quick Sort, the time complexity is
O(n log n). So, Quick Sort and Merge Sort have asymptotically same time
complexity. Now the question arises that which one is better (if we ignore
the space complexity)? Firstly we can say that for Quick Sort we can do
some intelligent division (taking a pivot element first and then divide the list
after some comparisons) whereas for Merge Sort we divide the list blindly.
After each pass in Quick Sort, one element (the pivot element) is placed in
its final position, from where we need not to move that element further. This
does not happen in Merge Sort generally. Practically, movement of records in
Merge Sort is higher; it also uses a temporary array for the record movement.

For Merge Sort, elements of two sublists are compared during merging,
but in Quick Sort elements from different sublists are never compared. Hence
Quick Sort demands less number of key comparisons. Combining all these
factors, we can say that the Quick Sort is better than the Merge Sort.

In-place and stable sorting: An algorithm is an in-place algorithm if
the input (array of) data is not moved to temporary locations, rather the
input list is modified directly to give the output. Merge Sort is not an in-
place sorting algorithm whereas Quick Sort, Bubble Sort, etc. are in-place
algorithms. A sorting algorithm is stable if the records with equal keys retains
their original order. That is, if Ki = Kj and i < j, and if after sorting Ki

and Kj are placed is positions i′ and j′, then for stable algorithms, i′ < j′.
Our Quick Sort algorithm (Algorithm 7) is not a stable algorithm.



8.2 Sort by Selection
In this family of algorithms, minimum (or, maximum) element is selected to
consider it as the first (or last) element. From the remaining elements again
minimum (or, maximum) elements is selected and considered as second (or
second last) element. And so on.

8.2.1 Straight Selection Sort
Suppose there is a list of n elements. Select the maximum element from the
list. Then put it in the last position. Then for the rest (n−1) elements again
follow the same procedure.

Theorem 5 : To select minimum or maximum element from a list of n
elements, atleast n− 1 comparisons are needed.

So total number of comparisons required for this Straight Selection Sort is
(n−1)+(n−2)+ · · ·+1 = n(n−1)

2
. Hence, time complexity of this algorithm

is T (n) = Θ(n2). The best and worst cases are asymptotically same here.
However in this process we need to explore always the whole list to select

minimum element form this. Can we get an improved way of choosing the
maximum element? Let us now discuss the issue and for that we can consider
here the scenario of a knock-out tournament.

8.2.2 Knock-out tournament
In a knock-out tournament suppose there are 8 teams A,B,C,D,E,F,G,H. We
are searching for the Champion. In first stage, suppose following teams in
pairs (A,B), (C,D), (E,F), (G,H) play matches against each other and let the
winners be B,C, E, H. Then (B,C) and(E,H) matches are played. Suppose
B and E are the winners. Then B and E compete with each other and let’s
say E is the winner. Hence E is the champion in the tournament. We can
represent the whole scenario by the following tree.



A B C D E F G H

B C E H

B E

E

Here, the parents represent the winners and the root is the champion.
Observe that there is no play between some teams such as (B,D),(E,G) etc.
For 8 teams we need 7 matches to get the champion. This fact agrees with
Theorem 5.

But to get the second best, we need much lesser plays if we use the results
of already played matches. We see that there has been no play in the pair (B,
G), (B,H) and (B,F). Here, match between B and G is redundant, because
H was winner in the match of G and H. So we need two more matches for
(B,H) and (B,F). Let the winner of both the cases be B and so B is the second
best. Here to choose the second best we consider the results of already-played
matches and removing the E from the list. That is, for the search of second
best, we use the previously formed tree, due to which we can reduce the
number of plays. So, once we form the tree we can use it for further cases.
It is called Tree Selection.

So, if we can develop an algorithm taking inspiration from this knock-
out tournament for selecting maximum (or minimum) element, then that
algorithm can perform much better than the Straight Selection Sort.

8.2.3 Heap Sort
We utilize this kind of technique in Heap Sort. Let us say a list of keys
K1, K2, · · · ,n is a heap if

Kbj/2c ≥ Kj 1 ≤ j/2c < j ≤ n.

Thus, K1 ≥ K2, K1 ≥ K3, K2 ≥ K4, etc. This implies that the largest
element appears on the top of the heap.

We first heapify the given list of records to efficiently select maximum
element. Details of Heap Sort is skipped here. But one can see that the
worst time complexity for this algorithm is T (n) = O(n log n) and space
complexity is O(1).



Hence we get two classes of sorting algorithms. One has worst case time
complexity O(n2) and other has complexity O(n log n). But can we further
improve sorting algorithms? Is it possible to design a better algorithm with
time complexity O(n)?



Chapter 9

Sorting in Linear Time

There are two linear time sorting algorithms – Counting Sort and Bucket
Sort. These are called Special Purpose Sorting Algorithms as they do not
take any list of records as input but put additional constraints on input list.

9.1 Counting Sort
We use this algorithm if the following two constraints are satisfied by the
input list of records. This technique has following restrictions:

1. Records are non-negative integers.
2. If the highest integer in the input list is l, then l = O(n).

In this algorithm, a temporary array of size l+1 is taken, which is initialized
to 0. The keys (records) are considered as the indices of the temporary
array. The input list is scanned from the beginning and the content of the
temporary array against a key is increased by 1.

As example, consider the input list as 2, 9, 3, 5, 3. Here l = 9.All the
locations of the temporary array are 0 initially. When we get 2, then the
location 2 of the temporary array is increased to 1. Since 3 appears twice in
the list, location 3 of the temporary array is raised to 2 after scanning of the
list.
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l = 9

To give sorted output, we scan the temporary array from the beginning.
Whenever, we get a non-zero value, the index is printed. If the non-zero
value is k, then that particular index is printed k times.
Time Complexity: This algorithm uses two loops - one to scan the input
list of size n, and the other to scan the temporary array of size l for giving
output. Hence, the time complexity is T (n) = O(maxn+ l). Since our
assumption is l = O(n), so T (n) = O(n).
Space Complexity: The algorithm uses a temporary array of size l+1. So
the space complexity is S(n) = O(l). That is, S(n) = O(n).

9.2 Bucket Sort
This algorithm is applied on an input list if the following restriction is ful-
filled: The records are normalized reals, distributed uniformly over [0,1).

The idea of bucket sort is to divide the interval [0, 1) into n equal-sized
buckets and then distribute the input n numbers into the buckets. Since
uniform distribution is assumed, we do not expect many numbers to be in a
bucket. As a next step, we individually sort each bucket, and then output
the sorted buckets starting from the first.

Let us take the following list of numbers as input:

0.5, 0.21, 0.52, 0.71, 0.01, 0.8, 0.95, 0.32, 0.673

Here n = 10. So we need a temporary array that can hold these 10 buckets.
Under each bucket a list is formed to store the numbers under that particular
bucket. The first number is 0.5, so it goes to the 6th bucket. Following is
the scenario.
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After distribution of numbers, buckets are sorted using any general pur-
pose sorting algorithm. Following is the algorithm.

Algorithm 8 Input: A list of normalized reals K1, K2, · · · , Kn ∈ [0, 1)
Output: Sorted list
Step 1: For each i = 1, 2, · · · , n, perform Step 2.
Step 2: Insert Ki into B[bn.Kic] where B is a temporary array of buckets.
Step 3: For each i = 0, 1, · · · , n− 1, perform Step 4.
Step 4: Sort the list B[i] (using any algorithm).
Step 5: Concatenate the sorted lists B[0], B[1], · · · , B[n − 1] to output the
result.

Let us now analyse the time complexity of the algorithm. There are
two loops in the above algorithm and both run for n steps. We intuitively
understand that the algorithm runs in O(n) time, because each list of B
contains ideally single element, and so there is nothing to sort. Let us now
prove it more formally.

Assume that ni is the length of list of bucket i. As per Step 4, we can
use any sorting algorithm to sort the bucket. Let us use Straight Insertion
Sort to sort the buckets. So, worst case complexity for sorting bucket i is
O(n2

i ).If T (n) is time complexity of Algorith 8, then we can write:

T (n) ≤ cn+
n−1∑
i=0

cin
2
i (9.1)



We now find out expected value of T (n). Here ni is the random variable
which depends on input data. Taking expectation in both sides of the above
equation, we get that

E[T (n)] ≤ E

[
cn+

n−1∑
i=0

cin
2
i

]
= cn+

n−1∑
i=0

ciE[n2
i ] [By linearity of expectation]

(9.2)

E[n2
i ] depends on the fact that how many elements fall in the bucket i.

Let us consider an indicator random variable Xij which notes if Kj falls in
bucket i. Hence,

ni =
n∑

j=1

Xij

Now, we can find out E[n2
i ].

E[n2
i ] = E

[(
n∑

j=1

Xij

)2]

= E

[
n∑

j=1

n∑
k=1

XijXik

]

= E

[
n∑

j=1

X2
ij +

∑
1≤j≤n

∑
1≤k≤n
k 6=j

XijXik

]

=
n∑

j=1

E[X2
ij] +

∑
1≤j≤n

∑
1≤k≤n
k 6=j

E[XijXik]

(9.3)

Since Xij is an indicator random variable with uniform distribution, it is
1 with probability 1/n and 0 otherwise. So

E[X2
ij] = 1.

1

n
+ 0.(1− 1

n
) =

1

n

When k 6= j, Xij and Xik become independent. So we get

E[XijXik] = E[Xij]E[Xik] =
1

n
.
1

n
=

1

n2

Substituting these values in Equation 9.3, we obtain the following:



E[n2
i ] =

n∑
j=1

1
n
+
∑

1≤j≤n

∑
1≤k≤n
k 6=j

1
n2

= n. 1
n
+ n(n− 1). 1

n2

= 2− 1
n

Putting this result in Relation 9.2, we get that

E[T (n)] ≤ cn+
n−1∑
i=0

ci(2−
1

n
)

Now we can easily show from this expression, that is the expected value of
T (n) is O(n). This concludes that fact that the bucket sort algorithm runs
in linear expected time.



Chapter 10

Lower Bound Theory

We see that there are some Special Purpose Sorting Algorithms which have
linear time complexity. But the good General Purpose Sorting Algorithms
take O(n log n) time . Question is, can we develop a better general purpose
sorting algorithm with lesser asymptotic time complexity? To answer this
question, we need to know the Lower Bound of the Sorting Problem.

For a given problem P, there are countably many algorithms. For the
problem, the lower bound is the worst case complexity of the best possible
algorithm. In other word, the minimum amount of resources (time or space)
that the problem demands to get solved by any algorithm is the lower bound
of the problem. Note that, for any algorithm we are generally interested in
upper bound of resource requirement, whereas for a given problem, we are
interested to know the lower bound of its resource requirement. Following
are some example problems and their lower bounds.

1. Finding of minimum or maximum from an unsorted list of n elements:
we have to visit all the locations to find the minimum (or maximum)
element. So, the lower bound of this problem is Ω(n). It is impossible
to find an algorithm with lesser complexity, say O(log n).

2. Multiplication of two square matrices of dimension n × n: Resultant
matrix is of dimension n × n. Each of the n × n locations are to be
visited to get the answer. So the complexity of any algorithm can never
be lower than n2. So, lower bound of this problem is Ω(n2).

3. Finding of all possible permutations of elements of a set of n elements:
Since the number of possible permutations is n!, the lower bound of
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this problem is Ω(n!).

Now we will search for the lower bound of Sorting Problem with respect
to time complexity. We deal with general purpose sorting problem where
sorting is done by comparing keys only. This class of algorithms are also
known as Comparison based Sorting Algorithms. Here comparison is the
primary operation. So, minimum number of comparisons required in worst
case to sort a list of n elements is to be the lower bound of the problem.

Let us first discuss with an example of three elements. Let K1, K2, K3

be the elements to be sorted. Here 3! permutations of the keys are possible,
one of which is the required output. We can first compare K1 and K2. If
K1 ≤ K2, then we compare K2 and K3. If K2 ≤ K3, then sorted order
is 〈K1, K2, K3〉. We can use Decision-Tree model to get all possibilities.
Following is the whole scenario.

k1 : k2

k2 : k3 k1 : k3

k1 ≤ k2 ≤ k3 k1 : k3 k2 ≤ k1 ≤ k3 k2 : k3

k1 ≤ k3 ≤ k2 k3 ≤ k1 ≤ k2 k2 ≤ k3 ≤ k1 k3 ≤ k2 ≤ k1

≤ >

> >

> >

≤ ≤

≤ ≤

Observe that leaves of the tree the all possible ordering of input keys, one
of which is the sorted order. What is the worst case here? Worst case is 3
comparisons, which is the height of the tree. Let the height of the tree be h.
Hence, the lower bound of this problem is h. If it is a complete binary tree
the number of leaves will be 2h. But the decision tree can have n! nodes. So,

2h ≥ n!⇒ h ≥ dlog2 n!e

We can use Stirling’s Approximation: n! =
√
2πn(n

e
)n[1 + Θ( 1

n
)]. That is,

dlog2 n!e = n log2 n−
n

loge 2
+

1

2
log2 n+O(1)

Hence, roughly n log2 n comparisons are needed. That is, h = Ω(n log n).



One can find out this bound without using Stirling’s approximation:

log2 n! = log2 n+ log2(n− 1) + · · ·+ log2 2

=
n∑

i=2

log2 i

=
n/2−1∑
i=2

log2 i+
n∑

i=n/2

log2 i

≥ 0 +
n∑

i=n/2

log2
n
2

= n
2
log2

n
2

Hence, h = Ω(n log n). That is, the lower bound of the problem is
Ω(n log n). This lower bound is called Information-Theoretic Lower Bound.
It proves that, Heap Sort, Merge Sort are asymptotically optimal algorithms.

Remark: For finding lower bound of a problem, choice of computational
model is very important. In case of above problem, we have considered that
ordering of input keys are decided by comparing the keys on a single-processor
computer. If we choose parallel processing, distributed computing or quan-
tum computing environment, lower bound of a problem may be different.



Chapter 11

External Searching and Sorting

The Searching and Sorting Algorithms we have discussed till now are internal,
because input lists are stored completely in main memory. Sometime the
main memory may not accommodate the whole data, and then the data are
to be stored in secondary storage. An algorithm is called external if it is
designed to process data that are stored in secondary (external) memory.

11.1 External Searching
In case of external searching, the list of records resides in secondary memory.
To search an element from the list, a part of the data is brought to the
main memory from the secondary storage. And then that part of the list is
searched. If unsuccessful, then again another part of data is brought to the
main memory. And so on.

To analyse algorithms for external searching, the model of computation
that we have considered till now will not work. Because, in those models
such as RAM model (similarly in the previous algorithms), we assume that
the main memory is large enough to accommodate all input data. But this
is not true here.We also need another metric to measure the performance of
external algorithms: the number of disk access. In general, disk access is an
expensive operation in any computer, because it demands a great amount of
time compared to accessing data from main memory.

So a general target of the external searching algorithms is to reduce the
number of disk access. For that we have to organise data in a special way.
To facilitate that organisation, we exploit the structure of B-tree.
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11.1.1 B-tree
B-trees are multiway balanced trees. Although B-trees are developed for
external searching, they are also treated as self balancing tree data structure.

Definition 7 A B-tree of order p is a tree that satisfies the following prop-
erties:

1. Every node have at most p children.
2. Every node, except the root and the leaves, has atleast bp

2
c children.

3. The root has atleast 2 children (unless it is not a leaf).
4. All leaves are in same level.
5. A node with q children contains q − 1 keys.
6. Keys in a node are sorted in ascending order.

Therefore,the B-tress are balanced and can be treated as search trees. Fol-
lowing is an example B-tree of order 5.

52

11 21 41

3 7 15 20 29 30 43 50

61 73

54 56 62 63 82 87 101 121

Figure 11.1: B-tree of order 5

Observe that each node is sorted in ascending order. Elements of the left
(first) child of a node are less than the first element of the node. Elements
of second child of the node are in between the first and second elements of
the node. And so one. So this tree can act as search tree.

Let’s say, we want to search for element 39. The searching starts from
the root. Since 39 is less than 52 (the root), we go to the left child of the
root. The left child has three elements, and 39 is in between 21 and 41. So
we go to this left child’s child whose elements are to be in between 21 and
41. Whenever we go to that node (here it is a leaf), we find that the search
key does not exist. So our search remains unsuccessful.

An important thing about B-tree is that insertion is quite simple. A new
element is always added at a leaf node.If the number of elements reaches to



p (the order) after addition, the leaf node is split into two and the middle
element move to their parent, if any (otherwise, the middle element becomes
the root). Since the tree grows from the leaf, it remains balanced always.

Figure 11.1 is the B-tree of order 5 which we get for the following sequence
of data: 50, 87, 3, 52, 54, 21, 7, 30, 15, 62, 73, 43, 101,63, 56, 61, 82, 11,
29, 41, 20, 121. Insertion of upto first four elements,the tree remains as a
single-node tree:

3 50 52 87

However, if one more element is inserted then the condition of B-tree is
violated as the tree can accommodate at most 4 keys in a node. So the node
is split and the middle key becomes the root:

52

3 50 54 87

Number of levels of a B-tree increases only when the nodes cannot accommo-
date newly inserted data. In the above tree, if we insert next two elements
(21 and 7), they are added in the left child. But if the next element (30) of
the sequence is inserted, then the left child violates the condition, and so it
is split into two. And the middle element moves to the upward direction:

21 52

3 27 30 50 54 87

In this way, the tree grows, and its levels increases in upward direction, which
keeps the tree balanced always. If we insert the elements in above sequence,
we get the tree of Figure 11.1. Obviously, the structure of tree depends
on the sequence of data.Deletion of an element is also simple though it is
comparatively complicated than the insertion.

A (non-leaf) node in a B-tree with q−1 keys has q children .So the nodes
contains q pointers that point to its children. Hence following is the structure
of a node. Here small circles are representing the pointers.

c K1
c K2 · · · Kq−1

c



11.1.2 Searching from disk
To search records efficiently from secondary memory, B-tree is formed by the
keys of records. By accessing the nodes of the B-tree, we can decide whether
the record against the search key exists or not. If exists, we wish to output
the record by another disk access. To facilitate this, we need to store the
disk address of the record where it really exists along with key. Hence the
structure of a node of the B-tree looks like the following:c (K1, c) c (K2, c) · · · (Kq−1, c) c
Here the small circle within a box represents the pointer that points to a child
of the node, whereas the circle along with a key represents a pointer which
points to a disk address where the record against the key exists. However,
both the pointers hold some disk address, because the records as well as the
nodes of B-tree are stored in disk.

To optimize the disk access, we make a node as large as possible so that
a block of the disk can accommodate a node. Note that a disk is accessed
block-wise, that is, by a single disk access, we get a block of data. Size of a
node depends on size of a key and on the order (p) of the B-tree.Let’s say
that keys are 4-byte integers. Size of disk address is assumed as 8 bytes.
Then, the maximum possible size of a node is

8p+ 4(p− 1) + 8(p− 1) = 2p− 12

bytes. Generally size of a block is 4KB. To accommodate a node in a block,
following condition is to be satisfied:

20p− 12 ≤ 4000

This implies,
p ≤ 200.6

Hence, for p = 200, a node can be accommodated in a single block.Maximum
possible height of a B-tree of order p is dlogd p

2
e ne where n is the number of

keys. Hence, for unsuccessful search,

Number of disk access = dlogd p
2
e ne

which is much lesser in number if we do the same by sequentially accessing
the records from disk.

To further reduce the number of disk access, variations of B-tree, such as
B+-tree have been developed. Hashing is also utilized for the same purpose.



11.2 External Sorting
External sorting typically uses a hybrid sort-merge strategy. In the sorting
phase, chunks of data that are small enough to fit in main memory are read,
sorted, and written out to a temporary file. In the merge phase, the sorted
sub-files are combined into a single larger file.

One example of external sorting algorithm is the External Merge Sort,
which sorts a chunk of data that fits in RAM, then merges the sorted chunks
together. We first divide the file into runs such that a run can be fitted into
main memory. Then we sort each run in main memory using merge sort
algorithm. Finally, we merge the resulting runs together into successively
bigger runs, until the file is sorted. Following are the steps of Sort-Merge
strategy.

1. Read input file such that at most run_size elements are read at a time.
Do the following two steps for the every run, read in an array.

2. Sort the run (say, using Merge Sort).

3. Store the sorted run in a file.

4. Merge the sorted files to get a single sorted file.



Chapter 12

Hashing

Why do we need sorting and searching? We observe that more than 90% of
total computing time in commercial computing is spent in searching. Not
only for commercial purpose, even in scientific computing we require search-
ing most of the time. Sorting is required in many cases to felicitate the
searching. And, sorting is needed to organise data in memory. So, the
sorting and searching are included in the study of Information Storage and
Retrieval.

As always, we want to have a faster way of information retrieval, that is,
of searching technique. For the Searching Problem, however, the lower bound
is Ω(log n), whereas it is Ω(n log n) for Sorting Problem. We are limited by
these bounds. There are asymptotically optimal algorithms for searching and
sorting, such as Binary Search and Merge Sort.

Now if we want to have even faster searching algorithms, we have to alter
the way of searching. We have observed that the searching (and general
purpose sorting) are comparison based. If we can search data without solely
by key comparisons, the above lower bound of searching will no longer remain
valid. We get some hints from Counting Sort that if we can bypass the key
comparisons, then we may get faster sorting algorithm.

Thanks to Hashing, which finally gives us a very fast technique of search-
ing element. It effectively runs in constant time. Instead of searching by key
comparisons, it computes the probable location of the search key and then
look at that location. Like Binary Search Trees and B-tree, hashing tells us
how to store data in memory. Therefore, if sorting is used to organize data in
memory to facilitate efficient access of records, then the same purpose can be
fulfilled by hashing itself. Hashing means to chop something up or to make
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a mess out out of it. The idea in hashing is to scramble some aspects of key
and to use this partial information as the basis for searching.

12.1 Hash functions
We compute a hash address h(K) using the hash function h and start search-
ing there. Before that we store the data in memory (in tabular form) using
the same hash function. This memory area is called hash table.

Let us consider that the n records with keys K1, K2, · · · , Kn are stored
in m locations. So the condition

0 ≤ h(K) < m

for all keys K are to be satisfied. We want to design a good hash function
which has very less computational cost and distribute the keys uniformly over
m memory locations. That is, if m ≥ n, then each key should occupy one
memory location. Following is an example scenario of a good hash function
for n = 9 and m = 11:

0 → K4

1 → K2

2 → K9

3 →

4 → K1

5 → K7

6 → K3

7 →

8 → K5

9 → K8

10 → K6



However, design of such hash functions is very difficult.There are mn

possible functions for a domain of size of n and a co-domain of size m. Even
for small m and n, say m = 100 and n = 80, possible number of functions
(10080 = 10160) unmanageable. It is interesting to mention here that the age
of this universe is only 1043 seconds and number of particles in the observable
universe is in between 1078 to 1082. These figures hint that how difficult it is
to choose the best hash functions from all possibilities.

Therefore, we may not see the above ideal scenario for a chosen hash
function. We can see that for two different keys Ki and Kj, h(Ki) = h(Kj).
This situation is called collision, which is very common in hashing.If such
situation arises, we have to resolve the collision, that is, we need to adopt
collision resolution policy. So in hashing, two issues are important: (a) design
of good hash functions, and (b) collision resolution technique.

Task of a good hash function is to generate hash addresses to uniformly
distribute the keys (and records) over the hash table. The hashing where
the keys are distributed uniformly over hash table is called simple uniform
hashing. Although it is theoretically impossible to design hash functions for
simple uniform hashing, extensive experiment on typical lists of records have
shown that two major types of hash functions work quite well. One is based
on division, and the other is based on multiplication.

12.1.1 Division Method
The division is particularly easy; we simply use the remainder after dividing
the key by m:

h(K) = K mod m

For example, if m = 11 and K = 100, then h(K) = 1. Here we consider
the keys are natural numbers. Question is, can we consider a key in the
form of string or real number as a natural number? Answer is yes. A string
of characters can be seen as a sequence of 0s and 1s, hence a natural num-
ber. Similarly for other types of keys, they can either be interpreted or be
approximated as a natural number.

In this method, some values of m is much better than others. If m is
even, then h(K) is even when K is even and odd when K is odd. This bias
may lead to bad result in many cases.The scenario becomes even worse if
m = 2p for some p. Experience says that if we choose m as prime number,
performance of the hashing is satisfactory.



12.1.2 Multiplicative Method
Multiplicative hashing scheme is equally easy to do, but it is slightly harder
to perceive the idea as it works with fractions instead of integers. Let us first
fix a constant A such that 0 < A < 1. Then, the define the hash function as
following

h(K) = bm(K.A mod 1)c

for all keys K. Here by the operation K.A mod 1, we extract the fractional
part of K.A. In this case we usually consider m = 2p for some integer p, so
that h(K) consists of the leading bits of the fractional part of K.A.

Here quality of hashing does not only depend on m, but also on A. It
is generally difficult to choose right value of A.It is argued that if A is ap-
proximately the golden ratio, that is, if A ≈

√
5−1
2

= 0.6180339887, then the
hashing performs better.

Note that computational complexity of hash function of both the method
is very less and constant. That is, the time complexity is O(1), which is
another requirement of designing good hash functions.

12.1.3 Universal Hashing
In the above cases, fixed hash functions are proposed for hashing, which may
yield bad result for some data sets. To achieve uniform hashing criterion, we
can use a set of suitably designed hash functions. One function from that
set is to be chosen randomly for a given list of records. This approach is
known as universal hashing. Due to random selection of hash function, for
a single list of given records, we can get different scenario for two different
execution. So, on an average, the performance of universal hashing scheme is
better than others. By performance, we mean here that number of collision
gets minimized.

Let H be the set of hash functions that map the keys to m memory
locations. This set is called universal if for each pair of distinct keys K and
K ′, the number of hash functions h ∈ H for which h(K) = h(K ′) is at most
|H|/m. In other words, for a randomly chosen hash function, the chance of
collision for these two distinct keys is at most 1

m
.

By taking all the above measure and designing good hash function, how-
ever, we cannot avoid collision completely. So we need collision resolution
technique.



12.2 Collision resolution by chaining
When two keys possess same hash address, that is, when h(Ki) = h(Kj)
for Ki 6= Kj, both the records against the keys are kept in same address by
forming a linked list (chain of records). Therefore, we get here chained hash
table, and the m locations of the table contains starting address of m linked
lists.

We illustrate this method by following example. Suppose we have eight
records with keys 96, 50, 120, 10, 110, 30, 23, 80, and are using the hash
function; h(K) = K mod 11. We get that 96 mod 11 = 30 mod 11 = 8.
So these two records are placed at location 8 by forming a chain. Similarly,
records with keys 120 and 10 form a chain to share a single hash address.
Final hash table looks like the following. Here we have shown only the keys
(not the whole record).

0 → 110 → NIL

1 → 23 → NIL

2 → NIL

3 → 80 → NIL

4 → NIL

5 → NIL

6 → 50 → NIL

7 → NIL

8 → 30 → 96 → NIL

9 → NIL

10 → 10 → 120 → NIL

When we insert a record in the table, we first find the hash address
and then insert the record in the front of the linked list. Hence the time
complexity for insertion is Θ(1). To delete a record from the table, we have
search first if it exists in the table. If exists, then it takes constant time to



remove the record from the table. So deletion is bounder by the searching
complexity.

Let us define load factor (α) of a hash table as

α =
n

m

Let ni is the length of chain i. So n0+n1+ · · ·+nm−1 = n. Under the simple
uniform hashing assumption, expected length of ni is E[ni] = α = n

m
.

Theorem 6 : In a hash table in which collisions are resolved by chaining,
an unsuccessful search takes expected time Θ(1 + α) under the assumption
of simple uniform hashing. A successful search also takes time Θ(1 + α) on
an average under the same assumption.

Proof for unsuccessful search: In this case, the record does not exist
in the table. First, hash address i ∈ {0, 1, · · · ,m − 1} is computed, then
the chain of length ni is searched. We consider that the computing of hash
address takes O(1) time. Since E(ni) = α, total time required in this case is
Θ(1 + α).I
Proof for successful search: Let us consider that we search for the record
with key Ki. So for successful search, we have to search 1 more than the
number of keys before Ki in Ki’s chain. And, the keys before Ki in its
list are the keys Kj that are inserted after Ki and h(Ki) = h(Kj). For
keys Ki and Kj, let us define an indicator random variable Xij that notes if
h(Ki) = h(Kj). Under simple uniform hashing, Pr{h(Ki) = h(Kj)} = 1/m,
and so E[Xij] = 1/m.

Now, Ki can be any key in the list of n records.So, to get the average
time, we find the average number of keys searched in successful search. If
this number if X, then

INote here that the ‘+’ is equivalent to max. If α < 1, then the bound is Θ(1),
otherwise it is Θ(α)



X = 1
n

n∑
i=1

(
1 +

n∑
j=i+1

Xij

)
E[X] = E

[
1
n

n∑
i=1

(
1 +

n∑
j=i+1

Xij

)]
= 1

n

n∑
i=1

(
1 +

n∑
j=i+1

E[Xij]
)

= 1
n

n∑
i=1

(
1 +

n∑
j=i+1

1
m

)
= 1 + 1

nm

n∑
i=1

(n− i)

= 1 + 1
nm

n(n−1)
2

= 1 + α
2
+ α

2n

= Θ(1 + α)

Hence, expected time required for successful search is Θ(1 + α).

Therefore, the searching complexity heavily depends on α. If α < 1, we can
achieve O(1) searching complexity. Even for α ≥ 1, if n = O(m), we can
search the hash table in constant time. However, the hashing scheme may
degenerate if most of the elements of keys are clustered in few places of the
hash table. In the worst case, searching becomes Sequential Searching!

12.3 Collision resolution by open addressing
Another way to resolve the issue of collisions is to do away with links com-
pletely, simply looking at various locations of the table one by one until either
finding the key K or finding an empty position.

Let us adopt the simplest strategy to insert or search a record in the
hash table: first find the hash address h(K), then inspect the positions
h(K), h(K)+1, h(K)+2, · · · . If we encounter an open position while search-
ing for K, we conclude that the record is absent in the table. When we want
to insert a record, then we search for an empty location in the table.

As example, consider the following sequence of integers is to be into a hash
table of eleven locations (m = 11): 2, 12, 9, 5, 8, 1, 23. Our hash function
is h(K) = K mod 11. The first two integers are inserted into locations two
and one. Later when we want to insert 1, its hash address is 1, which is
already occupied. So we sequentially search for a free place. We find that



location three is empty, where 1 is inserted. Following is the hash table after
insertion of above integers.

0

1

2

3

4

5

6

7

8

9

10

12

2

1

23

5

8

9

Here the table is considered as a circular array. And α = n
m

is always
less or equal to 1. For better result, we can keep at most 80% of the table
as filled up. Observe that we are searching successively. This successively
search is called Probe, and the sequence of search locations is called probe
sequence.

At this stage, we can define an auxiliary hash function h′ which takes
the hash address as input and generates the probe sequence: h′(h(K), i)
gives the ith entry in the probe sequence. Hence, the probe sequence is
〈h′(h(K), 0), h′(h(K), 1), · · · , h′(h(K),m−1)〉. That is, the maximum length
of the sequence is m.

So, we have to search and insert according to the probe sequence. The
length of probe sequence determines the time complexity for search and in-
sertion of the scheme. Following are the well-known probing techniques in
open addressing.

1. Linear Probing

2. Quadratic Probing

3. Double Probing
Linear probing: In the above example, we have adopted linear probing
technique. Here the auxiliary hash function is

h′(K, i) = (h(K) + i) (mod m)



Linear probing is easy to implement, but it sometimes suffers from the prob-
lem of primary clustering. That is, the records may get clustered in a single
place.

Quadratic probing: For this probing technique, we choose the auxiliary
hash function as

h′(K, i) = (h(K) + c1.i+ c2.i
2) (mod m)

where c2 6= 0. The issue of primary clustering can be avoided here, though
other clustering may be observed here.

Double hashing: For this technique, we use two hash functions h1(K) and
h2(K), and find the probe sequence by

h′(k, i) = (h1(k) + i.h2(k)) (mod m)

This method is considered as the best method available for open addressing.
The analysis of open addressing depends, like chaining, on the load factor

α. In our analysis, we assume that each key is equally likely to be a part of
any possible probe sequence. This is called uniform hashing.

Theorem 7 : The expected number of probes in an unsuccessful search is at
most 1

1−α
, whereas for successful case it is at most 1

α
ln 1

1−α
in an open-address

hash table, assuming uniform hashing and α < 1.

Therefore, searching and insertion of records in open addressing can be
very efficient. Deletion of records, however, is little bit cumbersome here.
We cannot directly delete an element after locating it in the table. If we do
so, the hash table may become inconsistent. While deleting, we generally
put a special symbol to indicate that location is empty.



Chapter 13

Dynamic Programming

Although there is no general way of designing algorithms for a given problem,
some standard methods have been developed which can be exercised to solve
a problem. Some of the standard methods are

1. Divide-and-Conquer

2. Dynamic Programming

3. Greedy method

We have discussed Divide-and-Conquer method during discussion of Binary
Search and Merge Sort algorithms. Here we shall discuss about Dynamic
Programming. Dynamic programming is typically used to solve Optimiza-
tion Problems. For this class of problems, we may get a number of possible
solutions with different cost. Task here is to declare the solution with optimal
(minimum or maximum) cost as desired solution to the problem.

However, an arbitrary optimization problem may not be solved using
dynamic programming method. We next discuss the basics of dynamic pro-
gramming method through the following example.

13.1 Matrix Chain Multiplication Problem
Let us consider a sequence of three matrices A1A2A3 to be multiplied. There
are two ways to multiply these three matrices – ((A1A2)A3) and (A1(A2A3)).
Note that matrix multiplication is a binary operator; so we need to put
parenthesis to depict the order of multiplication. One property of this matrix
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multiplication operator is that it is associative. So, each one of these gives
the correct result. But both of them do not incur same computational cost.

Time complexity of matrix multiplication operation depends on num-
ber of scalar multiplications. Assume that A1, A2 and A3 have dimensions
10× 100, 100× 80 and 80× 20 respectively. So, total number of scalar mul-
tiplications required
for ((A1A2)A3) is (10× 100× 80) + (10× 80× 20) = 96000 and
for (A1(A2A3)) is (100× 80× 20) + (10× 100× 20) = 180000

Obviously, the first option of multiplication is noticeably better than the
second one. Since both the options give same result, the first option should
be chosen. Now if a sequence of n matrices are given, we get many options
of multiplication. Here the problem is to find out an order of multiplication
which demands minimum number of scalar multiplications (not to find the
final matrix after multiplication). That is, we need to put parenthesis over
the sequence to indicate the order of multiplication. So this problem is also
known as parenthesization problem.

Problem Statement: Given a chain (sequence) of matrices (A1A2 · · ·An)
of different dimensions such that multiplication is allowed, find the order of
multiplication so that number of scalar multiplications gets minimized. In
other word, parenthesize the sequence of matrices so that the required num-
ber of scalar multiplications gets optimal.

To solve this problem, we need to see all possibilities of ordering before
choosing the optimal one. Assume that P (n) is the number of possibilities
for the chain of n matrices. Obviously, P (1) = P (2) = 1 and P (3) = 2.

We can find out P (n) for n ≥ 2 through following recurrence relation.
Suppose that parenthesis over the chain of matrices is put as follows: (A1 ×
A2 × · · · ×Ak)× (Ak+1 ×Ak+2 × · · · ×An). Now, number of possibilities for
(A1 ×A2 × · · · ×Ak) is P (k), and for (Ak+1 ×Ak+2 × · · · ×An) possibilities
are P (n− k). Hence, we get the total possibilities

P (n) =

1 n = 1
n−1∑
k=1

P (k)P (n− k) n ≥ 2
(13.1)

Let us now see how P (n) grows. Consider the following Table 13.1. Here
we see that after n = 6, P (n) is higher than 2n. Hence P (n) = Ω(2n). In fact,



Table 13.1: Growth of P (n) of Equation 13.1

n P (n) 2n

1 1 2
2 1 4
3 2 8
4 5 16
5 14 32
6 42 64
7 132 128
8 542 256

one can show that P (n) = Ω( 4n

n3/2 ). So practically the number of possibilities
P (n) is unmanageable. That is, if we want to find all possibilities in a brute-
force way, and target to find the optimal solution, then we cannot manage
it. Dynamic programming can help us to dramatically improve the scenario.

It can be observed that in a number of possible parenthesizations, same
parenthesization to a subsequence AiAi+1 · · ·Aj (subproblems) is repeated.
For example, when n = 4, in two possibilities ((A1 × A2) × (A3 × A4)) and
(A1× (A2× (A3×A4))), the subproblem (A3×A4) is repeated. So, if we can
find the number of scalar multiplications required for (A3 × A4) once, that
can be utilized later for the other occurrence. The repeated occurrence of
a subproblem in several possible solution is called overlapping subproblems.
In that case, we can store the solutions to subproblems so that they can be
used later.

This problem has another interesting and important property, named
Optimal Substructure property. Let us consider that the optimal parenthe-
sization of A1A2 · · ·An splits the product between Ak and Ak+1. Then the
parenthesization of the subchain A1A2 · · ·Ak (and Ak+1Ak+2 · · ·An) is also
optimal. Why is it so? Because, if there were a less costly way to parenthesize
A1A2 · · ·Ak, then that would produce another parenthesization with lesser
cost than the optimal one - a contradiction. This property is known as opti-
mal substructure property.This property is indeed essential to use dynamic
programming to any problem.

Let us now use a 2D array m to store the solutions to subproblems.
Consider that m[i, j] store the minimum number of scalar multiplications
needed for multiplying the sequence AiAi+1 · · ·Aj. We can define m[i, j]



recursively.

m[i, j] =

{
0 i = j

min
i≤k≤j

{m[i, k] +m[k + 1, j] + pi−1.pk.pj} i < j

If i = j then there is a single matrix. If we can solve this recurrence relation,
then m[1, n] is to be our desired solution. Let us take an example with n = 6
and following dimensions:

n Dimension
A1 30× 35
A2 35× 15
A3 15× 5
A4 5× 10
A5 10× 20
A6 20× 25

We shall use the above recurrence relation to find out optimal number of
scalar multiplications required. We need a 2-D array to store the values of
m[i, k].

1 2 3 4 5 6

1

2

3

4

5

6

0

0

0

0

0

0

15750 7875 9375 11875 15125

2625 4375 7125 10500

750 2500 5375

1000 3500

5000

When i = j then we put 0. So in the diagonal cells we put 0. Lower part
of the diagonal is useless because of i > j. Now,
m[1, 2] = m[1, 1] +m[2, 2] + p0 × p1 × p2 = 0 + 0 + 30× 35× 15 = 15750
m[2, 3] = m[2, 2] +m[3, 3] + p1 × p2 × p3 = 0 + 0 + 35× 15× 5 = 2625
m[1, 3] = min{m[1, 1]+m[2, 3]+ p0× p1× p3,m[1, 2]+m[3, 3]+ p0× p2× p3}



= min{0 + 2625 + 30× 35× 5, 15750 + 0 = 30× 15× 5}
= min{7875, 17900} = 7875

m[1, 4] = min{m[1, 1] + m[2, 4] + p0 × p1 × p4,m[1, 2] + m[3, 4] + p0 × p2 ×
p4,m[1, 3] +m[4, 4] + p0 × p3 × p4}

= min{0 + 4375 + 30 × 35 × 10, 15750 + 750 + 30 × 15 × 10, 7875 +
0 + 30× 5× 10} = 9375
In this way the m is filled up. The final result, that is, the optimal number
of scalar multiplications required gets stored in m[1, 6].

We have discussed the basic steps of the algorithm in the above example.
To get m[i, j], we use min function over the set {m[i, k]+m[k+1, j]+pi−1×
pk × pj} for i ≤ k < j. The value of k against the minimum value is the
position to split the chain: (Ai × · · · × Ak) × (Ak+1 × · · · × Aj). We need
another array s[i, j] to store this k. Let us write a pseudo code for Matrix
Chain Multiplication. Here, let p denotes dimensions of matrices: dimension
of Ai is pi−1 × pi.

1. for i← 1 to n
2. do m[i, i]← 0
3. for l← 2 to n
4. do for i← 1 to n− l + 1
5. do j ← i+ l − 1
6. m[i, j]←∞
7. for k ← i to j − 1
8. do q ← m[i, k] +m[k + 1, j] + pi−1 × pk × pj
9. if q < m[i, j]

10. then m[i, j]← q
11. s[i, j]← k

Major part of this algorithm is line 6 to 10 where we can find the k for
which we get m[i, j]. In line 3 and 4 we run the loop to get all possible cases.

Time Complexity: If there are k number of nested loops for n number of
inputs then the time complexity for most of the cases will be bounded by
O(nk). Here k = 3. We see that line 2 is bounded by n, line 3 is bounded by
n. Line 4 can run at most n times. So line can run at most n times. Hence
the time complexity of this algorithm cannot exceed c.n3 for some constant
c. That is, the upper bound of time complexity is O(n3).

To compute time complexity we are considering the loops. Why the loops
are so important? Let there be two nested loops.



for (i = 1 to n)
{

for (j = 1 to m)
{

...
}
...
}
Let the time required for the inner loop be c and for the outer loop be c′.
Then time complexity is (cm+ c′)n = cnm+ c′n = Θ(nm).

Space Complexity: For the array m[i, j] we need n2 locations and for the
array s[i, j] we need another n2 locations. So it is Θ(n2) for all the cases -
best case, worst case and average case.

Let us now understand the impact of extra space on time complexity. To
do so, we shall not store solutions to the subproblems in m[i, j], rather we
shall recompute them if required. Let us write a pseudo code for that.

Recursive-Matrix-Chain(i,j)
{

if i = j
then return 0

m[i, j]←∞
for k ← 1 or j − 1

do q ← Recursive-Matrix-Chain(i, k)+Recursive-Matrix-Chain(k+
1, j)+pi−1pkpj

if q < m[i, j]
then m[i, j]← q

return m[i, j]
}

Time Complexity: Let T (n) be the time complexity of above algorithm.

T (n) ≥
n−1∑
k=1

[T (k) + T (n− k) + c] + c′

Here c′ is the time taken by first three lines of the algorithm.

⇒ T (n) ≥
n−1∑
k=1

T (k) +
n−1∑
k=1

T (n− k) + c.(n− 1) + c′



= 2
n−1∑
k=1

T (k) + c.n− c+ c′

= 2
n−1∑
k=1

T (k) + n(c− c
n
+ c′

n
)

⇒ T (n) ≥ 2
n−1∑
k=1

T (k) + n

We shall solve this using substitution method. We shall show that T (n) =
Ω(2n).
Let us assume that T (n) ≥ 2n−1 for all n ≥ 1. Tha basis is easy, since
T (1) ≥ 1 = 20. Inductively, for n ≥ 2, we have

T (n) ≥ 2
n−1∑
k=1

2k−1 + n

= 2(20 + 21 + · · ·+ 2n−2) + n
= 2× 1× 2n−1−1

2−1
+ n

= 2× (2n−1 − 1) + n
= 2n − 2 + n
≥ 2n−1

It shows that our assumption is correct. Hence, T (n) = Ω(2n). So lower
bound is exponential. However, our matrix chain multiplication by dynamic
programming takes only O(n3) time, which is dramatically less than this
exponential time requirement. This shows the impact of extra space use on
time complexity and power of Dynamic Programming.

13.2 Conditions of using Dynamic Program-
ming method

Dynamic programming method can be applied to a problem if the problem
shows optimal substructure property and it has overlapping subproblems.

Optimal Substructure Property: The problem has to show the optimal
substructure property. Suppose a problem P is given. It has two subproblems
P1 and P2 with solutions S1 and S2 respectively. Let S be the optimal solution
to the problem P that includes S1 and S2. Then S1 is the optimal solution
for the problem P1 and S2 is the optimal solution for the problem P2.

For example, Shortest Path Problem shows optimal substructure prop-
erty. Consider a graph with s as the source and d as the destination. Let u be



a node on the optimal path from s to d. In this case we get two subproblems:
1. s is the source and u is the destination.
2. u is the source and d is the destination.
Then the path from s to u and from u to d must be optimal otherwise the
path s u d cannot be optimal. So Shortest path problem has the optimal
substructure property.

However, Longest path problem for undirected graph does not have opti-
mal substructure property. For example, let us take a triangle ∆ABC. The
longest path between A and B is A→ C → B. But A→ C is not the longest
path between A and C.

Overlapping Subproblem: Whenever an algorithm for a problem revis-
its the same subproblem over and over again to construct its solution, we
call that the problem has overlapping substructure. Dynamic programming
algorithms typically take advantage of overlapping subproblems by solving
each subproblem once and then storing the solution in a table where it can
be looked up when needed. In contrast, a problem for which Divide-and-
Conquer is suitable, generally visits new subproblems at each step.

A question may arise here that why is the word Programming is used here?
What is a Program then? Programs should contain all the properties of al-
gorithms. But the difference is in algorithms we can use any language but for
programming we have to use some formal language. Note that programming
languages are formal languages but all formal languages are not program-
ming languages. In Dynamic Programming, we follow some specific steps
with proper syntax to solve a problem. We use a particular way to fill up the
table.So this way of solving an optimization problem is called programming.



Chapter 14

Greedy method

A thief is robbing a store. There are n items in the store. The item i is
of weight wi and of cost vi. The thief has a knapsack which can carry at
most W weight. The thief, as usual, wants to maximize the total cost of
robbed items, and generally, W <

n∑
i=1

wi. Question is, how the thief fill up

the knapsack? So it is an optimization problem.
Let us take an example with n = 3.

Item 1 Item 2 Item 3

10 kg 20 kg 30 kg

Rs. 60 Rs 100 Rs 120

Here w1 = 10kg, v1 =Rs.60;
w2 = 20kg, v2 =Rs.100;
w3 = 30kg, v3 =Rs.120.

Size of knapsack is W = 50, i.e. the thief can carry at most 50kg. The thief
takes the items one by one. Among the above items which one will the thief
like to put into the knapsack?

In our example, Item 3 has highest cost and Item 1 has the least cost.
But Item 1 is the most valuable item, as its per kg price is Rs. 6. Per kg price
of Item 2 and Item 3 are Rs. 5 and Rs. 4 respectively. What the thief does
is, the most valuable item is taken as much as possible, then the second most
valuable item is taken. And so on. The thief does not explore all possibilities
to maximize the cost of knapsack. Rather, a Greedy strategy is adopted here.
The greedy strategy can provide optimal solution to the thief.
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10 kg of Item 1, 20 kg of Item 2 are taken first. 30kg of Item 3 is available
but the knapsack can accommodate 20kg more. So the thief takes 20kg of
Item 3.

20kg

20kg

10kg

Item 3

Item 2

Item 1

Here, total cost =Rs.60 + 100 + 80 =Rs.240
Is this the proper way of approaching the problem? Is the above solution

correct? Let the items cannot be broken into parts. Then the above solution
is not correct. Then we should take

30kg

20kg

Item 3

Item 2

Then the total cost is Rs.100 + 120 =Rs.220. We are claiming that this
is the optimal one. How can we say this?

14.1 Knapsack Problem
These problems are known as knapsack problem. The first problem is called
Fractional Knapsack Problem and the second one is called 0-1 or Inte-
ger Knapsack Problem. Here 0 − 1 stands for either one item is taken
completely or not. taken at all First problem is more natural and our ap-
proach to solve the problem is also very appealing. But with that approach
we cannot reach to the optimal solution for the second problem. First ap-
proach is called Greedy Method.

To solve the second problem we need Dynamic Programming. We con-
sider all possible cases and from there we have to choose the optimal one. In
the first problem we sort the items by their unit price in descending order
and then we fill up the knapsack by taking items one by one following the
sorted order.



We understand that Greedy Method is computationally very good. But
if an arbitrary problem is given how can we say that Greedy Method is
applicable for it?

To attempt a problem with greedy method, the problem has to satisfy
two properties – Optimal Substructure Property, which we have discussed
during discussion of dynamic programming, and Greedy Choice Property. A
problem satisfies greedy choice property, if (globbaly) optimal solutions can
be reached by choosing (locally) optimal solutions to the subproblems. In
case of fractional knapsack problem, first the most valuable item is chosen,
second the most valuable from the remaining items is chosen, and so on.
Hence, an item that seems the best choice at that moment (locally optimal
solution to a subproblem) is chosen, though we want global optimal solution.
This phenomenon is named as Greedy-Choice Property. However, we have
to prove first that a given problem really satisfies greedy choice property.
Theorem 8 : Fractional Knapsack Problem shows Greedy-Choice Property.

Suppose we have n items and we put the items in the knapsack according
to the above mentioned greedy strategy. Our claim is we are able to achieve
the optimal solution.

Assume by contradiction that the claim is false, that is, this does not
lead to optimal solution. Let item x is the jth valuable item with cost cj.
If our assumption is true, then we can replace Item x by Item y having cost
c′j < cj.

c1 + c2 + ...+ cj

c
′

j

cj

But, total cost is c1 + c2 + · · · + c′j + · · · which is less than c1 + c2 +
· · ·+ cj + · · · . That means, we get a contradiction. Hence our assumption is
wrong. So, Fractional Knapsack Problem shows Greedy-Choice Property.

14.2 Huffman Code
Huffman code was introduced for data compression. It uses greedy method.
Consider a text file having some characters with different frequencies of us-



age. We want to code these characters so that data of the file can be stored
compactly. Let us consider that there are six letters only - a, b, c, d, e, f . If
we use fixed length coding to code these characters, we need three bits for
each character. Following may be a possible coding.

a b c d e f
000 001 010 011 100 101

This is better than the ASCII code, as ASCII code uses eight bits per
character. However, if frequencies of characters of the file differ, we can get
better codes, with variable lengths of codes, which can help to store data in
a more compact way. Let us consider the frequencies of the characters as
following:

character a b c d e f
Frequency of the characters 600 130 240 95 360 50

For 3-bit long fixed size coding, total bits needed is (600 + 130 + 240 +
95 + 360 + 50)× 3 = 1475× 3 = 4425 bits.

Let us now look at variable length coding schemes. The most popular
variable length coding scheme is Prefix coding, where no codeword is a prefix
of any other codeword. For example, if ‘0’ is the code for a, then code for
any letter cannot start with ‘0’. This prefix coding can achieve good data
compression.

Huffman code is an optimal prefix code which is constructed by a greedy
algorithm. The problem of assigning optimal prefix code to characters follows
greedy choice property. Huffman’s algorithm constructs a binary tree to
optimally assign the codes to the characters. Following are the steps of
constructing Huffman tree.

1. Form leaves of the tree with each character, and sort the leaves with
increasing order of frequencies.

2. Pick up two nodes with minimum frequencies and form an internal node
as their parent. The node with lowest frequency is the left child and
other is the right child. Th parent contains the sum of two frequencies.

3. Replace the the first two nodes of above step by their parent. Insert
the parent in proper position so that the list of nodes remains sorted.



4. Repeat steps 2 and 3 until the list contains a single node. The remain-
ing node is the root node and the tree is complete.

The algorithm can run in O(n log n) time. After construction of tree, we
traverse the tree to give a code to a character, by labelling left edge by 0 and
right edge by 1.

Following the above steps, we can form the Huffman tree for the above
example.

1475

875

515

275

145

a : 600

e : 360

c : 240

b : 130

f : 50

d : 95

0
1

0
1

0 1

9
1

0

1

Here we first form an internal node by considering f as its left child (as
its frequency is minimum) and d as right child (as its frequency is second
minimum). Then we form another internal node by considering the leaf for
b as left child and the newly formed internal node as right child. And so on.
After forming the tree, we get the following code for the characters:

a is coded as 0,
e is coded as 10,
c is coded as 110,
b is coded as 1110,
f is coded as 11110,

and d is coded as 11111.
Then total number of bits required is = (600 + 130× 4 + 240× 3 + 95×

5 + 360× 2 + 50× 5) bits = 3285 bits. So there is a significant improvement
with respect to data compression, and it is the optimal prefix coding.



Decoding in this scheme is also very simple. Since no codeword is a pre-
fix of any other, the codeword that begins an encoded file is unambiguous.
We can simply identify the initial codeword, translate it back to the origi-
nal character, and the repeat the decoding process on the remainder of the
encoded file.



Chapter 15

Amortized Analysis

Amortized analysis is applied on data structure operations that are per-
formed repeatedly. Classical asymptotic analysis gives worst case analysis
of each operation without taking the effect of one operation on the other,
whereas amortized analysis focuses on a sequence of operations, an interplay
between operations, and thus yielding an analysis which is precise and depicts
a micro-level analysis. In amortized analysis, all the operations performed
are averaged to get an amortized cost of the operation. However, it is not an
average case analysis.

Let us consider an example of k-bit binary counter which is incremented
in an algorithm by following procedure:

void Increment(char* A, k)
{

int i;

for(i=0;i<k;i++)
{

if(A[i]==1) A[i]=0;
else break;

}
if(i<k) A[i]=1;

}

The worst case scenario for this procedure is that A is filled up with all-1.
In that case, time complexity is O(k). If this procedure is called from an
algorithm again and again, and we consider its time requirement is O(k) for
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each call, then that will be an overestimation. And that does not lead us
to find the tight bound of time complexity of the algorithm. So we look for
amortized cost of Increment operation. Following are three ways of finding
the cost.

1. Aggregate analysis

2. Accounting method

3. Potential method

15.1 Aggregate analysis
In aggregate analysis, we first find the total cost T (n) for a sequence of n
operations, then we divide T (n) by the number n to obtain the amortized
cost of the operation. For all operations the same amortized cost T (n)/n
is assigned, even if they are of different types. The other two methods may
allow for assigning different amortized costs to different types of operations
in the same sequence.

Let us consider the above example of binary counter. We observe that
number of bit flips in a call Increment determines its cost (that is, time re-
quirement). We further observe that the LSB (A[0]) is flipped in each call,
A[1] is flipped bn/2c times in a sequence of n calls, A[2] is flipped bn/4c
times, and so on.

Counter A Number of
value 3 2 1 0 flips
0 0 0 0 0 0
1 0 0 0 1 1
2 0 0 1 0 2
3 0 0 1 1 1
4 0 1 0 0 3
5 0 1 0 1 1
6 0 1 1 0 2
7 0 1 1 1 1

Total cost 11



Hence, total number of flips in successive n calls with initial value counter
values as 0 is

blog2 nc∑
i=0

⌊ 1
2i

⌋
< n

∞∑
i=0

n

2i
= 2n

That is, the total cost of n calls is bounded by 2n, which implies that the
average cost of each operation is O(1).

15.2 Accounting method
In this method of amortized analysis, we assign different changes to different
operations and maintain an account with the underlying data structure. The
amount we charge an operation is the amortized cost of the operation. If it
exceeds the actual cost, the difference is stored as credits, which is used later
for other operation. Let ĉi and ci denote the amortized cost and actual cost
of ith operation. Then, following is to be maintained.

n∑
i=1

ĉi ≥
n∑

i=1

ci

Let us consider the above example here. Assume that cost of flip from
0 to 1 is 2, and cost of 1 to 0 is 0. When a bit flip from 0 to 1, we use 1
unit of cost, and the rest is stored as credit for later use. We understand
that a bit is flipped from 1 to 0, only if it was set earlier.Actually, already
stored credit is used here to pay for resetting a bit. Hence, above condition
is always maintained.

Now we get that in each call of Increment, only once a bit is set (flipped
from 0 to 1). So the amortized cost is 2, that is O(1). This analysis even
easier than the previous method.

15.3 Potential method
Instead of storing prepaid works as credit, the potential method represents
the prepaid work as “potential energy” that can be released to pay the future
operations. For an operation, after performing the operation, the change in a
structural parameter, such as the number of elements, the height, the number
of property violations of a data structure, is captured as a function, called



potential function which is stored at a data structure. As part of the analysis,
we work with non-negative potential functions. If the change in potential
is positive, then that operation is over charged and similar to accounting
method, the excess potential will be stored at the data structure. If the
change in potential is negative, then that operation is under charged which
would be compensated by excess potential available at the data structure

The potential function method defines a function φ (potential function)
that maps a data structure onto a real valued non-negative number. In the
potential method, the amortized cost ĉi of operation i is equal to the actual
cost ci plus the increase in potential due to that operation:

ĉi = ci + φ(Di)− φ(Di−1)

where Di is the data structure at ith operation. Hence we get the total
amortized cost as

n∑
i=1

ĉi =
n∑

i=1

(ci + φ(Di)− φ(Di−1))

=
n∑

i=1

ci + φ(Dn)− φ(D0)

Let us consider the same example of Increment once again. Here, the
structural parameter of interest is the number of 1’s in the counter. During
ith iteration, all ones after the last zero is set to zero and the last zero is set
to 1. For example, when increment is called on a counter with its contents
being ‘11001111’, the result is ‘11010000’. Let x denotes the total number of
1’s before the ith operation and t denote the number of ones after the last
zero. At the end of ith operation there will be x − t + 1 ones, t ones are
changed to 0 and the last zero is changed to 1. Thus, the actual cost for the
increment is 1 + t. Therefore, the amortized cost is

ĉi = ci + φ(Di)− φ(Di−1) = 1 + t+ (x− t+ 1)− x = 2

Hence, amortized cost of each Increment call is O(1).



Chapter 16

Graphs and traversal
algorithms

Graphs are binary relations over a non-empty set. Formally, a graph G =
(V,E) is mathematical structure where V is a non-empty set and E ⊆ V ×V
is a binary relation over V . V and E are generally called as the set of vertices
and set of edges respectively.

Let us consider V = {1, a,#, b} and a binary relation E = {(1, a), (a, 1), (1,#), (#, b)}.
This binary relation is a graph. Generally we love to present a graph by its
pictorial presentation. Following is the pictorial presentation of the graph.

1

a

# b

Sometimes graphs are classified as directed and undirected. Since a binary
relation is a set of ordered pairs and an ordered pair (x, y) represents ‘from
x to y’, a graph is always directed. If the relation E is symmetric (that is,
(x, y) and (y, x) both exist in E), we omit direction from edges. This graph
is called undirected graph.

There are two ways of representing a graph in computer - adjacency ma-
trix representation and adjacency list representation. In matrix representa-
tion, a 2D array is used as data structure. Rows and columns of the matrix
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represent the vertices. For (x, y) ∈ E, (x, y) location of the array is 1. Fol-
lowing is this matrix representation of the graph.

1 a # b

1

a

#

b

0 1 1 0

0

0

1

1

0 0 0

0

0 0 0

0

In list representation, the adjacent vertices of a vertex are represented by
a linked list. Following is the list representation of the graph.

1

a

#

b

a #

1

b

16.1 Breadth First Search(BFS)
BFS is a graph traversal algorithm which systematically explores the nodes
of a given graph. We assume that the graphs are taken by their list repre-
sentation. Let us consider the following graph.

r s t u

v w x y

For this algorithm, we consider undirected graph but the scheme is also
applicable to any graph. Graphs may also be disconnected, though we have
considered here connected graph. We want to explore all the vertices. We
can start from any node. Let the start vertex here be s.

For BFS, we explore the nodes breadth wise, starting from a given source
vertex (here s). Initially all the nodes of the graph are undiscovered. Since r



and w are immediate neighbors of s, we can discover any one of them. Let’s
say we discover w first. In next step we do not discover the neighbors of
w, but discover r. Whenever r has been discovered, we declare s has been
explored, as there is no node to go from s. Next, in a similar fashion, we
start discovering the neighbors of w one by one.

Nodes in the algorithm can, therefore, be in three states - (1) UNDIS-
COVERED, (2) DISCOVERED, and (3) EXPLORED which are identified
by three colors - WHITE, GRAY and BLACK respectively. Initially all the
nodes are colored as WHITE, which are step by step colored to GRAY,
and then BLACK. Following figure shows a snapshot where s and w are
EXPLORED, r, x and t are DISCOVERED and the rest remain UNDIS-
COVERED.

r s t u

v w x y

Data structure: Apart from the adjacency list for representing input graph,
few more data structure are needed by the algorithm.

1. A queue (Q) – It stores the nodes just discovered. A node is dequeued
from Q to explore it, and when a new node discovered, it is enqueued.
FIFO nature of queue ensures that the nodes are explored breadth-wise.

2. Distance array d – It stores the distance from the source vertex.

3. Predecessor array π – If we note down the edges of exploring the nodes,
we get a tree, called breadth-first tree. This tree is stored in π, which
notes down predecessor of a node in the tree.

4. State array color – It stores the color of each vertex.

The algorithm terminates when Q is empty. That is, when all the nodes
that are reachable from the source have been explored, the algorithm stops.
Following is the final graph.

r s t u

v w x y



The BFS tree along with the distance of nodes from s, is shown below.

r s t u

v w x y

2

1

1
2

2

3

3

BFS(G,s)

1. for each vertex u ∈ V [G]− {s}
2. do color[u]← WHITE
3. d[u]←∞
4. π[u]← NIL
5. color[u]← GREY
6. d[s]← 0
7. π[s]← NIL
8. Q← ∅
9. ENQUEUE (Q,s)

10. While Q 6= ∅
11. do u← DEQUEUE(Q)
12. for each v ∈ Adj[u] (Adjacent vertex)
13. do if color[v] = WHITE
14. then color[v]← GREY
15. d[v]← d[u] + 1
16. π[v]← u
17. ENQUEUE (Q,u)
18. color[v]← BLACK

Complexity Analysis:
Time Complexity: In Steps 1-4 there is a loop that runs for |V | times. So
for these steps, we need O(V ) time. For Steps 5-9, time requirement is con-
stant. For Steps 10-18 there are two loops. There are both ENQUEUE and
DEQUEUE operations. We use here aggregate analysis (see Chapter 15).
Observe that we enqueue only undiscovered vertices. So ENQUEUE opera-
tion is performed O(V ) times. Obviously, if there is no ENQUEUE there is
no DEQUEUE. So DEQUEUE operation is also performed O(V ) times.

How many times the ‘for loop’ of Step 12 is executed? Each vertex is
dequeued once, and then the adjacency list against the vertex is scanned.
Total length of adjacency list is bounded by the number of edges. So the
time requirement is O(E) for the loop of Step 12. Hence for Steps 10-18,



total time requirement is O(V +E). Combing all the steps, we get the total
complexity of the algorithm is O(V + E). (Here ‘+’ denotes the maximum
between V and E).

Space Complexity: The algorithm uses a queue, size of which is bounded
by |V |. Three more array of size |V | are also used by the algorithm. Hence
the space complexity is O(V ).

If a vertex v is reachable from s, then it is discovered by the algorithm
of BFS. All the nodes which are reachable from s can be explored by BFS.
If the graph is unweighted then we can use BFS to get the shortest path of
nodes from s.

Theorem 9 : If the vertex v is reachable from the start vertex s, d[v] stores
the shortest path from s to v.

Proof : Let δ(s, v) represents the distance of shortest path from s to v. If
v is not reachable from s, δ(s, v) =∞. We want to show d[v] = δ(s, v) where
d[v] is the shortest path. We do it by induction.
Base Case: s  s ⇒ δ(s, s) = 0. In algorithm d[s] = 0 [by Step 6]. When
v = s then d[v] = δ(s, v).
Induction: Let (u, v) ∈ E. Let the graph is explored up to the vertex u.
Hence d[u] = δ(s, u) [by induction hypothesis]. But v remains undiscovered.
Following Step 15 of the algorithm of BFS
d[v] = d[u] + 1 = δ(s, u) + 1.
According to the algorithm, u is discovered first, then is v. So, δ(s, u) <
δ(s, v). Moreover u is the immediate predecessor of v. So, from Step 15,
δ(s, v) = δ(s, u) + 1.
∴ 1 and 2 gives, d[v] = δ(s, v). If u is not reachable from s, then δ(s, v) =∞
and then it is trivially true. Hence, the induction is proved. So, the data
structure d[u] contains the shortest distance. �

16.2 Depth First Search (DFS)
This is another graph traversal algorithm which discovers the nodes depth-
wise. Normally DFS is used for directed graph and BFS is used for undirected
graph. Let the following graph be given



We are taking here directed graph. Normally DFS is used for directed
graph and BFS is used for undirected graph. For BFS we go from u to v
and x. But for DFS we go u → v → y → x. Here, we are going deeper and
deeper. There are three types of nodes- UNDISCOVERED=WHITE, DIS-
COVERED=GREY, EXPLORED=BLACK. Initially all vertices are white.

Let us start from u. So it is GREY now. There are two options which
can be reached from u– v and x. Let us choose v. Now from v we go to
y. From y we have to go x. Primarily we are discovering the nodes without
exploring them. From x we go to v. But there is nothing to discover here.
Since from x we have nowhere to go so we can say that x is explored and it
becomes BLACK. Then we go to y. But there is no node to discover. So y
is explored. Then we go to v and since there is nothing to discover so v is
explored. Then we go back to u and then go to x. Since from x we cannot
go anywhere, so u is also explored.

Time of discovering and time of exploring are different. We note down
the time gap. At first time step we discover u. At time 2 we discover v. Then
at time 3 and 4 we discover y and x respectively. Then at time step 5 we



understand x is explored; y, v, u are explored at time step 6,7,8 respectively.
The path is shown below:

r s t u

v w x y
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1

1
2
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3

3

We use data structure d and f to note down the finishing time and π to
note down the tree. For BFS, we needs Q, but here we need a stack i.e. it
works in the rule ’last in first out’. This is the primary data structure for
DFS. We cannot avoid it.

Now, we start from w. We go to y then. But it is explored already. Then
we go to z. Then z is explored and finally w is explored. Therefore,
Time Step 9: w discovered
Time Step 10: z discovered
Time Step 11: z explored
Time Step 12: w explored

DFS(G)

1. For each vertex u ∈ v[G]
2. do color[u]← WHITE
3. π[u]← NIL
4. time ← 0
5. for each vertex u ∈ V [G]
6. do if color[u] = WHITE
7. then DFS-VISIT(u)

DFS-VISIT(u)

1. color[u]← GREY
2. time← time+ 1
3. d[u]← time
4. for each v ∈ Adj[u]
5. do it color[v] = WHITE
6. then π[v]← u
7. DFS-VISIT(v)
8. color[u]← BLACK
9. f [u]← time← time+ 1



Step 5-7 denote if one node is unreachable from starting node then we have
to use the for loop. Here system tracking is used. As the nodes are called
recursively they are put in a stack.
Time Complexity: For Step 1-3 we need O(V ). For Step 5-7 we need
O(V ) if we do not consider DFS-VISIT(u). For DFS-VISIT(u) we again use
aggregate analysis. In Step 4-7 the ‘for loop’ is executed depending on the
total length of the list:
Total length =

∑
u∈V Adj[u] = Θ(E)

The number of execution is limited by the number of edges. Number of
calling DFS-VISIT= number of undiscovered vertices.
∴ Total time is limited by Θ(V +E). So combining Step 5-7 and DFS-VISIT
we need Θ(V + E). Again Step 1-3 need time O(V ). Hence, the running
time is Θ(V + E).

Number of vertices does not always indicate number of edges. Number
of edges is much higher than number of vertices. But for trivial case V > E.
So we use V and E both the parameters. If E = O(V 2), it is Θ(E). But
since we do not know the relation, we use both V and E.

16.3 Application of DFS
We may not get a tree in DFS. For example, if the input graph is the previous
graph then we get two trees forming a forest.

u

v

y

x

w

z

Using DFS, we can put parenthesis on the graph. We have discovered
u, v, y & x and we have explored them in the manner x, y, v, u. So,
(u(v(y(x x)y)v)u) (w(z z)w). This parenthesization is consistent.

DFS can also be used to find the strongly connected component of a di-
rected graph. Let G = (V,E). Our problem is to find a maximal set C ⊆ V



such that x, y ∈ C, x y ⇒ y  x. We solve this using DFS.
Let us take the previous graph. E = {(u, v), (v, y), (y, x), (x, v), (u, x), (w, y), (w, z), (z, z)}
So, C = {v, x, y}, Es = {(v, y), (y, x), (x, v)}



Chapter 17

Minimum Spanning Tree

A Spanning Tree of a graph G = (V,E) is a tree which spans over the graph.
Hence, a spanning tree TΠ of G includes all the vertices V and a subset of
edges EΠ ⊆ E of G. That is, TΠ = (V,EΠ). However, if G is connected, then
only we can get a spanning tree. Let us consider the following graph.

a b c

d e f

The spanning tree of this graph is

a b c

d e f

We can get many spanning trees of a given graph. Let us now introduce
weight in the graph. We put weight on edges. Hence, now a graph is a
triplet G = (V,E,w) where w is a function, w : E → R. We call this
graph Weighted Graph. We define weight of a spanning tree as the sum of
weights of all edges of the spanning tree. We can now introduce the following
optimization problem:

Given a connected and weighted graph, find a spanning tree of the
graph, weight of which is minimum.
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This problem is the minimum spanning tree problem. This optimization
problem can be solved by Greedy method. This problem shows optimal
substructure property. It also has greedy-choice property.

Let a graph G be given against which we are searching for the minimum
spanning tree. Let T be a minimum spanning tree of the graph. Now, take
a vertex v of T . If we exclude v from the graph then we get a new graph G′

which is a subgraph of the original graph G. Let us now remove the vertex
v from T to get T ′. Will the tree T ′ be the spanning tree of the new graph
G′? Obviously, the answer is ‘yes’. So the minimum spanning tree problem
has optimal substructure property.

There are two classic algorithms for solving the problem. One is Kruskal’s
algorithm, the other is Prim’s algorithm. Both are greedy algorithms.

17.1 Kruskal’s Algorithm
We explain this algorithm with following example. The graph is undirected
but weighted. For minimum spanning problem, undirected graphs are gen-
erally considered. Kruskal’s algorithm says to develop first a forest with all
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the nodes of the given graph.

A

B C

D E

F

We sort the edges according to their weights in ascending order.Then we
take edges from the sorted list one by one to join the individual trees. We



exclude an edge to join two trees if the inclusion of the edge introduces a
cycle. Finally we get a tree with all the vertices.

In this example, the minimum weight is 2 and the corresponding edge is
AB. This edge is used to join two null trees A and B.

A

B C

D E

F

2

Next minimum is 2.8, which is used to join B and c. However, we cannot
join the edges blindly. We have to avoid the cycle formation.
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F

2

2.8

Then minimum value is 3. Here conflict arises. We take the edge DE.

2.8

2

3

A
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Then again minimum value is 3. So we join that edge.
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Then we get 4 as the minimum value for the edge AD. But if we include
this edge, a cycle is formed. So we do not use this edge. Same case arises
for the edge BE with weight 4.1. So that edge also cannot be a part of the
spanning tree. Then next minimum weight is 5.

2.8

2

3

A

B C

D E

F3

5

We stop here as we have received a single tree. The weight of the tree is
15.8, which is the minimum. We have used greedy method here. We have
not explored all possibilities to reach to the optimal solution.

Now we have to prove that the tree which we get by above method is the
minimal spanning tree. This can be proved by method of contradiction. If
the obtained spanning tree is not the minimum one, then there must be an-
other edge which has minimum weight and can be included in the minimum
spanning tree. But we have chosen the edges according to their weights in
ascending order. Hence, no edge with less weight was left which has possi-
bility to be included in the tree. Hence our assumption is wrong. So, the
algorithm gives the minimum spanning tree.

MST-KRUSKAL(G)

1. A← φ
2. For each vertex v ∈ V [G]
3. do MAKE-SET(v)
4. Sort the edge into non-decreasing order
5. For each edge (u, v) ∈ E, taken in non-decreasing order by weight.
6. do if FIND-SET(u) 6= FIND-SET(v)
7. then A← A ∪ {(u, v)}
8. UNION (u, v)
9. return A

Three operations are used here:

1. MAKE-SET



2. FIND-SET
3. UNION

S1, S2, · · ·Sk are disjoint sets. Let each set is identified by one representative.
For example, 3 can be representative of the set {2, A, 3, 9}. MAKE-SET
creates disjoint sets. FIND-SET(u) checks whether u belongs to a set or not.
It returns the representative of the set if u belongs to the set. UNION(u, v)
means two sets Su and Sv (Su for u and Sv for v) Su ∪ Sv performs. Then
we get a new set Su ∪ Sv and it returns the representative of this set.

In Step 3, if there are k nodes, k forests are formed. Then we sort the
edges based on their weights. Step 5-7 (these steps are the main steps) we
are taking the edges after sorting. In Step 6 let there are two sets Sx and
Sy. Let u ∈ Sx and v ∈ Sy. We do not know whether Sx and Sy are same or
not. If FIND-SET operation returns same value then there must be a loop.
If they are different then we go to next step.

Complexity: Step 5-8 depends on E + V . Most costly operation is in Step
4. It takes O(E logE) to sort the edges. So the complexity is dominated by
the sorting operation and it is O(E logE). But can we write the complexity
as O(E log V )? Generally |E| < |V 2| holds i.e. log |E| < 2 log |V | ⇒ logE =
O(log V ). Hence the complexity becomes O(E log V ).

17.2 Prim’s Algorithm
It tells that, instead of starting with forest, start from a vertex of the graph
as initial tree, and let the tree grow by including edges one by one. Let us
take the previous example again to explain the algorithm.
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Let us choose A as the starting vertex (the initial tree). We look at all
outgoing edges from the initial tree to get the minimum weight edge. Here
it AB with weight 2. So we include this edge and the vertex B to grow the



tree. Then, the tree has four outgoing edges with weights 4, 6, 4.1 and 2.8.
As 2.8 is the minimum, we include BC in the tree to grow it further.

2

2.8
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Then we have AD, BD, BE, CE. As 3 is minimum so we choose CE.
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Now we have the outgoing edges AD,BD,DE,BE,EF . Again minimum
value is 3. So we choose DE.
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Then AD has minimum weight. But as it is forming a cycle we do not
use this edge. Similar case arises for BE. Then the next minimum value is
5. So we include the edge EF .
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We have received the spanning tree of the graph as all the vertices have
been covered. The weight of the tree is 15.8. The stopping criteria of the
algorithm is the inclusion of all vertices of the graph in the tree. It can be
proved like before that the algorithm is correct.

Asymptotically Kruskal’s algorithm and Prim’s algorithm have same com-
plexity. Since minimum spanning tree of an arbitrary graph is not unique,
the algorithms may give different spanning trees.



Chapter 18

Single Source Shortest Path

Let us consider a weighted graph G = (V,E,w), where a function w : E → R
assigns a real number called weight to each edge of the graph. Suppose
u, v ∈ V are two vertices of the graph, and let there exists a path P =
(u, v1, v2, · · · , vk, v) from u to v (that is, u  v, which implies that v is
reachable from u). Weight of the path P is w(u, v1)+w(v1, v2)+· · ·+w(vk, v).
The path P is the shortest path if its weight is minimum among all possible
paths from u to v. Hence the shortest path problem is to find the shortest
path from a source vertex to destination vertex of a given.

There are a number of variations of the shortest path problem.

1. Pair-wise shortest path: Given a pair of vertices u, v ∈ V , find
the shortest path from u (called source vertex) to v (called destination
vertex).

2. Single source shortest paths: Given a source vertex s ∈ V ,find the
shortest paths of all possible vertices reachable from s.

3. Single destination shortest paths: Given a destination vertex d ∈
V , find shortest paths from all possible nodes to d. This problem is
similar to single source shortest paths problem, only difference is that
the direction is reversed. Hence the algorithm that solves the first
problem can solve this problem with only one extra step to reverse the
direction.

4. All-pair shortest paths problems: Find the shortest paths from u
to v for every pair of vertices u and v. We can repeatedly use the algo-
rithm for single source shortest paths problem to solve this problem.
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Among these four variants of the shortest path problem, The Single Source
Shortest Paths problem is considered the fundamental one. Although by
shortest path problem we intuitively understand the Pair-wise Shortest Path
problem, no algorithm is known for Pair-wise Shortest Path problem which
runs asymptotically faster than the best algorithm for Single Source Shortest
Path problem. In case of Computer Networking, single source shortest paths
algorithms are used as routing algorithms.

Theorem 10 : Single Source Shortest Paths problem shows optimal sub-
structure property.

Proof : Let u,x,y and v be four vertices of a graph such that u x y  
v. Let P = (u, x, y, v) be the shortest path between u and v. Let w(P ) =
weight of P = w(u  x) + w(x  y) + w(y  v). Here, w(x  y) is the
weight of path from x to y. When optimal substructure property is followed,
then w(x y), w(x y) and w(y  v) are also optimal.
Now by contradiction, assume that w(x  y) is not the optimal one. This
assumption implies that there exists a path from x to y with weight w′(x y)
such that w′(x y) < w(x y).
Then w(P ) > w(u  x) + w′(x  y) + w(y  v), that is, P is not the
shortest path, which is a contradiction. So such w′ cannot exist. Hence the
problem follows optimal substructure property. �

This result indicates that , we can use dynamic programming or greedy
method as the problem shows optimal substructure property. We next discuss
about Bellman-Ford Algorithm, which solves the Single Source Shortest Paths
problem.

18.1 Bellman-Ford Algorithm
Let us take the following example. We shall proceed with this example. In
general, the edges can assume any real number as its weight.The Bellman-
Ford Algorithm allows negative weights on edges.
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Finding of the shortest paths starts from a given source vertex. Let s be
the source vertex in this example. However, it may not be always possible to
find shortest paths of the vertices of an arbitrary graph from a given source
vertex. Let us consider the following graph:

s

u

v

2

3

-5

Can we find the shortest path from s to u? If the path is s → u then
the weight is 2. If it is s → u → v → u or s → u → v → u → v → u
then the weight is 0 and -2 respectively. This signifies that if there is a cycle
with negative weight then shortest path cannot be found out. We call that
a graph has negative weight cycle if there exists a cycle in the graph so that
the sum of the weights of edges in the cycle is negative. In the initially given
graph, however, there is no negative weight cycle.
Note: In graph theory we always consider static nodes. In case of mobile
network the nodes are dynamic. It is very difficult to deal with dynamic
nodes.

The Bellman-Ford Algorithm reuses the data structure that we have used
for BFS (see page 99). At initialization, 0 is assigned as distance from s to
s, and ∞ to all other nodes. So, d[s]← 0 and d[u]←∞ for each u except s.
In next step, s discovers only t and y, but remain unaware of the rest.
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In this step, 6 is minimum distance of t from s. So, the shortest path is
s t with weight 6. But it is not the final one. We have to run it further.
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We have s  t  x = 11 and s  y  x = 7 − 3 = 4. Since
4 is minimum, we take s  y  x. Again s  t  z = 6 − 4 = 2
and s  t  y = 6 + 8 = 14 > 7. Hence the required shortest path is
s  y  x  t  z. Here each node is computing. It has a flavour of
distributed algorithm. If there are n nodes algorithm stops after n−1 times.
Bellman-Ford(G,w,s)

1. For each vertex v ∈ V [G]
2. do d[v]←∞
3. π[v]← NIL
4. d[s]← 0
5. For i← 1 to |V (G)− 1|
6. do for each edge (u, v) ∈ E[G]
7. if d[v] > d[u] + w(u, v)
8. then d[v]← d[u] + w(u, v)
9. π[v]← u

10. For each edge (u, v) ∈ E[G]
11. do if d[v] > d[u] + w(u, v)
12. then return FALSE
13. return TRUE



Steps 5-9 are the main part of the algorithm. Here, d is the distance. Through
the tree π we get the graph. Step 6, 7, 8 tell that the nodes are independent.
Step 10-12 are checking whether there is some negative weight cycle. After
execution of Step 9, if d[v] is still greater than d[u]+w(u, v) then it indicates
that there exists negative weighted cycle. If there is one then there must not
be any shortest path and Bellman-Ford Algorithm fails in that case.

Let P = (v1, v2, · · · , vk) where v1 = s and vk = v is the shortest path.
Then there are k vertices and k − 1 number of edges. Obviously, k ≤ |V |.
During Step 6-8, we are checking each edge. So the algorithm will run |V |−1
times. Number of edges |(vi, vi+1)| ≤ V − 1. So w(P ) = d[v]. But if it has
negative cycle it will return false. This is because, we have checked all pos-
sible paths. After that if we can still reduce the weight then there exists a
negative cycle.

Complexity: For Step 1-4 the required time is O(V ).
For Step 10-13 the time requirement is O(E).
For Step 5-9 the time requirement is O(V × E).

So, the time complexity of the algorithm is O(V × E). However, the space
complexity is O(V + E).

Next section discusses another algorithm which uses Greedy Method to
solve the same problem.

18.2 Dijkstra’s Algorithm
Let us take G = (V,E,w), E ⊆ V × V,w : E → R+ ∪ {0} where weights are
non-negative. Dijkstra’s algorithm provides a greedy solution to single source
shortest path problem. This algorithm is faster than Bellman-Ford algorithm
and is closely related to Breadth First Search. In fact, the procedure is almost
similar to BFS.

Let us take an example.
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Let s is the source vertex. Initially, we do not know whether any other
nodes are reachable from s. So we initialize distance of s as 0 and distance
of other nodes as ∞. So,

0

∞ ∞

∞ ∞

From s, we can reach t and y. When we discover a path from s to t we
write distance of t as the weight of s + the weight of the connecting edge,
which in this case is 10 and similarly it is 5 for y. Once t and y are discovered,
s is explored. We make the explored node as black. In this algorithm we
systematically explore all the nodes.

∞ ∞

∞ ∞

0

10
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y z

Now we choose the node with minimum distance among all the nodes
excluding discovered nodes. So, here we choose y.
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From y we can go to z with distance 5 + 2 = 7 < ∞ and to x, whose
distance is 5 + 9 = 14 < ∞. We can also go to t with distance 5 + 3 = 8 <
10. As, this distance to reach t is lesser than t’s previous value, we update
distance of t as 8 with the path as s→ y → t. Note that, in BFS, we do not
reconsider discovered node. But here we do that. So it has some difference
from BFS. Now, y is explored. So we make it BLACK.
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As z has minimum weight, we choose it. From z we can go to x and
distance will be 7 + 6 = 13 < 14, hence cost of x is updated with new
distance. We can go to s also. But then distance will be 7 + 7 = 14 > 0. So
it remains same.
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Now we take t and go to x. The distance is 8 + 1 = 9 < 13. Lastly we
take x and it is explored. Finally we get the following tree.
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In this way we get the shortest path. Initially the set contains all the
nodes. Then the set of explored vertices is increased. When all the nodes
are in the set of explored vertices then the algorithm stops. If one node is
explored then its cost is final. For example, from t we can come back to
y, but we cannot get lesser weight. So, when we get the set of explored
vertices we do not have to re-look to those nodes. Here we can use MinHeap
(or binary heap) to find the minimum weights. Using heap, searching for
minimum weight is minimum.

In original Dijkstra’s Algorithm there is no min heap but now we use it
for betterment of the algorithm.



DIJKSTRA(G,w, s)

1. For each vertex v ∈ V [G]
2. do d[v]←∞
3. π[v]← NIL
4. d[s]← 0
5. s← φ
6. Q← V [G]
7. While Q 6= φ
8. do u←EXTRACT-MIN(Q)
9. s← S ∪ {u}

10. For each vertex v ∈ Adj[u]
11. do if d[v] > d[u] + w(u, v)
12. then d[v]← d[u] + w(u, v)
13. π[v]← u

Q is initialized with all the nodes. S = set of explored vertices. In Step 8,
we have to extract exactly one vertex. So the algorithm will run for V times.
In Step 10, there is a ‘for’ loop. So the total time taken for Step 10-12 is
O(V ). Total length of the linked list

∑
u∈V Adj(u) = Θ(E). So Step 10-12

takes Θ(E) time. If we use binary heap Step 8 will take log V time. So upper
bound for Step 7-12 is O(E log V )

Correctness: Suppose s is explored first with weight 0. Let the algorithm
is correct before discovering v where (u, v) ∈ E and weight of u is known. If
we reach x from v and weights are non-negative d[x] < d[v] + w(v, x) as x
is explored already. There are two steps. Let we can go back to x(explored)
from v. But d[x] ≤ d[v]+w(v, x) as weights are non-negative. If v is reachable
from u only then d[v] will be min. Let there is another vertex w from where
v is reachable. By executing Step 10-13, we can get d[v] which is minimum.

18.3 Hamiltonian Cycle
Hamiltonian cycle is a cycle which covers all the vertices of a graph exactly
once. Suppose an undirected graph is given.
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If we choose the above path, shown in bold line, then we cannot get a
Hamiltonian cycle.

e
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However, the above cycle is a Hamiltonian Cycle. Our problem is to
decide the existence of a Hamiltonian cycle in a graph. By exhaustive search
we can do it – find all possible permutations and then check if Hamiltonian
cycle exists or not. But, apart from this exhaustive procedure, can we make
it better?

An algorithm is efficient if it takes polynomial amount of time. For the
previous procedure, there are n! permutations in worst case. So it takes
exponential amount of time.

In DFS, we use backtracking. This problem is close to DFS, so let us see,
if we can use this here. Let us choose a. Then go to b. Then we take d, e
and c respectively.
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d

e

c

Dead End



We have covered all the vertices and c 6= a. We cannot go to a as it is
already discovered.
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If we choose c instead of e then again we go to a dead end. But if we
choose the path a− b− c− e− d− a we succeed.

Backtracking is better than exhaustive method. Worst case is when the
graph has no Hamiltonian Cycle. If we consider the tree, there are n children
and so here also the complexity is exponential.

18.4 Travelling Salesman Problem(TSP)
Here we take an weighted graph. The problem is to find the Hamiltonian
Cycle with minimum weight. This is an optimization problem. Backtracking
may not be appropriate here. So for this we can use Branch-and-Bound.



Chapter 19

Limit of Computing and
NP-Completeness

Given an arbitrary problem, can we develop an algorithm to solve the prob-
lem? To get an answer of this question, let us first understand the possible
number of problems that can exist, and the maximum possible number of
algorithms.

19.1 Problems and algorithms
A problem (P ) can be seen as a binary relation from a set of possible inputs
(I) to possible outputs (S). We can enumerate the inputs as natural number,
such as 0, 1, 2, etc. Since in a digital computer an input is given as a sequence
of 0s and 1s, one may interpret the sequence as a natural number. Outputs
can similarly be interpreted as some natural numbers.

Let us now consider a set UI as the universe of inputs where from any
problem takes input. That is, UI ⊆ I. Obviously, UI is a countably infinite
set. Similarly, the universe of possible outputs US is also a countably infinite
set. Hence, |UI | = |US| = |N| = ℵ0 (ℵ0 is assumed as cardinality of the set
of naturals).

Therefore, we can write P ⊆ UI×US. Hence, possible number of problems
is limited by the possible number of subsets of UI × US. Possible number
of subsets is 2|UI×US |, which is the cardinality of the power set of UI × US.
However, UI × US is also a countably infinite set. That is, |UI × US| = ℵ0.
From Cantor’s theorem we know that cardinality of the power set of UI×US

123



is strictly greater than the cardinality of the set.
Let us consider 2ℵ0 = ℵ1. That is, ℵ1 is the cardinality of a set which is

strictly larger than the set of naturals. It is known that cardinality of the set
of real numbers (R) is strictly higher than set of naturalsI. Hence, maximum
possible number of problems is equal to cardinality of R.

Let us now find out maximum possible number of algorithms that can
exist. Possible number of algorithms is bounded by the number of possible
strings in any language. Because, an algorithm can be seen as a string of
symbols of a language which is used to write an algorithm. However, the
set of possible strings in any language is a countably infinite set. Hence, the
maximum number of possible algorithms is ℵ0.

Now, the point is, ℵ0 is really very tiny with respect to ℵ1. In fact,
ℵ0

ℵ1
≈ 0.This scenario answers our question – whether all problems are solvable

by some algorithms. The answer is ‘NO’. That is, almost all problems are not
solvable through algorithms, hence are computationally unsolvable. However,
we are lucky to find that many of real-life problems are solvable!

Halting problem is an example of unsolvable problem. However, we do not
use the word ‘unsolvable’ in the theory of computing. We use ‘undecidable’
in place of ‘unsolvable’.

19.2 Decidable problems and decision prob-
lems

We can write algorithms for decidable problems. There are different types of
decidable problems. Some of the important types are the following.

1. Decision problems: In this class of problems, the output is either ‘yes’
or ‘no’. Searching problem is a decision problem. Similarly, whether a
given number is prime is a decision problem.

2. Counting problem: The desired output of this class of problem is a
natural number. An example problem is, given a number, find the
total number of distinct factors of the number.

IThis we get from Continuum Hypothesis, which says – there is no set whose cardinality
is strictly between that of the integers and the real numbers. However, the set of naturals,
set of integers, set of even numbers, set of rational numbers, etc. have same cardinality



3. Optimization problem: This class of problems requires optimization of
some objective function based on the problem instance. For example,
finding of minimum spanning tree of a given (connected) graph is an
optimization problem.

4. Permutation problem: A permutation of the input is the desired output
in this class of problems. Sorting problem is an example of permutation
problem.

However, we can transpose a problem of a type to its equivalent problem
of another type. An optimization problem can always be transposed to its
equivalent decision problem. For example, minimum spanning tree problem
can be written as following:

Given a connected graph, decide if its minimum spanning tree has
weight less than k.

This is decision version of the original optimization problem. Both the prob-
lems ask to find minimum spanning tree, but the second one wants to addi-
tionally check if the final tree has weight less than k. Obviously, the decision
problem is no more harder than the optimization problem.

In the similar fashion, any problem can be transposed into its equivalent
decision problem with (almost) same complexity. So when we classify the
decidable problems depending on their complexity, we consider only decision
problems.

19.3 Decision problems and languages
Any decision problem can be interpreted as a language over some alpha-
bet. For example, we can interpret the Searching problem as the following
language.

Suppose we want to search a number in a set of natural numbers. If we
search, for example, 3 in {5, 10, 2, 3, 15}, we will succeed. That is, the
answer is ‘yes’. But if we search 6 in the same set, the answer is ‘no’. We can
represent these inputs by concatenating the search key and the given list:

3{5, 10, 2, 3, 15} and 6{5, 10, 2, 3, 15}



We include those representation of inputs as words in the language for which
the expected output is ‘yes’. Hence, 3{5, 10, 2, 3, 15} is a word of the language.
Therefore, the language for the searching problem is

L = {xS | S ⊆ N ∧ x ∈ S}

Observe that we have included all possible inputs of the searching problem in
L for which the desired output is ‘yes’. Hence, this language can represent all
aspect of the searching problem. This shows us that we can treat a problem
by a formal language. We can now define decidability of a language (hence
a problem) as following:

Definition 8 A language L is decidable if there exists an effective procedure
that decides whether an element x is in L or not.

By effective procedure, we mean here that an algorithm exits and x is the
input to the algorithm. If the output of the algorithm is ‘yes’, we consider
that the input x is in L; otherwise, x is not in L. More formally, existence of
an effective procedure implies the existence of a Turing Machine that accepts
the language L.

19.4 Deterministic and non-deterministic Tur-
ing machines

A Turing machine consists of an infinite tape, a read/write head that can
read the content of a box on the tape and write to the box, an arm that
holds the read/write head and that can move to left and right box, and a
finite control that controls the movement and reading/writing of the head.
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Formally, a Turing machine (M) is a 7-tuple M = (Q, T, I, δ, b, q0, F )
where Q is the set of possible states of the machine, T is the set of tape
symbols, I ⊆ T is the set of input symbols, b represents the blank space, and
q0 ∈ Q is the initial state whereas F ⊆ Q is the set of final/accepting states.
However, the most important part of the machine is its transition function
δ, which defines the transition of the machine from one state to another.
The transition function takes the present state and the symbol under the
read/write head and produces the next state along with the symbol to be
written on the box and the instruction to move the head to the left (L), to
the right (R) or to stay on its old position (S).

Classically, a Turing machine is deterministic. The transition function

δ : Q× I → Q× (T ∪ {L,R, S})

is generally expressed in tabular format as shown bellow.

Present Next
State Input State Type Symbol L/R/S

Since for any algorithm there is a Turing machine, we need to express the
algorithm through the above mentioned tabular form to get the Turing ma-
chine. The idea of single-tape Turing machine has been extended to multi-
tape Turing machine for the purpose of analysis of algorithms. This machine



has k ≥ 1 tapes which are infinite to the right side only. For any multi-tape
Turing machine, it is possible to design an equivalent single-tape Turing
machine. Following is an important result which relates complexities of an
algorithm implemented on RAM model and (multi-tape) Turing machine.

Theorem 11 : If a RAM program accepts a language L in T (n) time under
logarithmic cost criteria, then the same language can be accepted by multi-
tape Turing machine in O(T 2(n)) time.

Therefore, if the time complexity of an algorithm is found as polynomial,
the time complexity will remain as polynomial even the algorithm is imple-
mented on Turing machine.

Let us now introduce non-deterministic Turing machine (NDTM) which
will be used to classify the problems depending on their complexities. In
case of NDTM, everything but δ is same with deterministic Turing ma-
chine (DTM). Unlike DTM, NDTM can move from a given present state
and tape symbol to one of the several possibilities. This makes the machine
non-deterministic, because we do not know in advance which possibility the
machine will assume during a move. Hence, the transition function of a
single-tape NDTM takes the following form:

δ : Q× I →P(Q× (T ∪ {L,R, S}))

where P(.) denotes the power set.
Therefore, from one state, an NDTM has more than one possibility to go.

For DTM, we have a single path from the initial state to a final state of the
machine, whereas we get a tree for NDTM that shows all possible options of
movement starting from initial state.

s1
s2 s3

p0
p1

p2

s0

DTM NDTM



An input x is deemed accepted if at least one sequence of moves with x
as input leads to an accepting state of the machine. In the above tree, there
may exist more than one sequence of moves that lead to accepting state.
However, we consider the sequence with minimum number of moves while we
find the time required to accept the input x.

Definition 9 We say that an NDTM is of time complexity T (n) if for an
accepted input of size n, T (n) is the minimum number of moves from initial
state to an accepting state.

DTM is a special case of NDTM, where the machine can move from one
state to exactly one state. A language that is accepted by a NDTM is also
accepted by some DTM. But that DTM demands more time and space to
accept the same language.

Algorithms that we have studied till now are deterministic in nature.
However, the NDTM induces the idea of non-deterministic algorithms. Let
us now introduce a non-deterministic algorithm for the Searching problem to
understand reduction in complexity.

If a list of n records along with a search key is given, then our non-
deterministic search algorithm can start searching from any of the n records.
If the record against the search key exists in the list, one of the start points is
the target record. If the record does not exist, no such match will be found.
Following are two steps of this algorithm.

Step 1: Pick up (non-deterministically) an index i from {1, 2, · · · , n}.
Step 2: If Ki = K, output ‘yes’.

Above two steps can be placed in a loop. Then, we may need arbitrary long
time to reach to an accepting state. However, time complexity of the algo-
rithm is O(1), since we can non-deterministically choose the correct answer
in one step (see Definition 9). So a non-deterministic algorithm can run much
faster than its deterministic counterpart.

Theorem 12 : Given an NDTM, it is always possible to derive an equivalent
DTM. Furthermore, a constant c exists such that, for any input x, if NDTM
accepts x in t time steps, then the DTM accepts x in, at most, ct steps.

This result indicates that, if an NDTM has polynomial time complexity then
the equivalent DTM which simulates the NDTM can take exponential time.



The intuitive reason of this result is, the equivalent DTM needs to visit all
the possible options before it halts.

19.5 The complexity class P and NP
We now classify the problems (hence languages) depending on the time com-
plexities of the best available algorithms for the problems. We call an algo-
rithm efficient if its worst-case time complexity is polynomial.

Definition 10 An algorithm is efficient if the time taken by it in worst case
is O(nk) for some k ∈ N. Here, n is the size of input.

Interestingly, we are ready to call an algorithm efficient even if it demands
huge, say O(n100) time. Important thing here is, whether the algorithm
demands polynomial time or beyond polynomial time. Based on this, we
extract a set of problems, called as P problems or P-time problems from
the pool of decidable problems. For these problems, at least one efficient
algorithm exists. For example, Searching problem, Sorting problem, Matrix-
Chain Multiplication problem etc. are examples of P problems. We can
define now this class of problems (languages) more formally:

Definition 11 P= {L | there exists a DTM that accepts w ∈ L in O(nk)
time, where n = |w|}

Let us now turn our attention to NDTM. Like the above, we extract a
set of languages that are accepted by some NDTM in polynomial time. This
set of languages (hence problems) are named as NP-time (Non-deterministic
Polynomial time) problems.

Definition 12 NP= {L | there exists an NDTM that accepts w ∈ L in
O(nk) time, where n = |w|}

This complexity class (NP) is sometime alternatively defined without
referring to NDTM. This alternative definition introduces the concept of
verifiability. It says that, if a possible solution is given then, whether the
solution is correct can be verified in polynomial time. Hence, according
to this definition, a class of languages is NP if and only if there exists an
algorithm that verifies whether a give sting is a word of the language in
polynomial time.



However, “verifiability in polynomial time” and “acceptance by an NDTM
in polynomial time” are two equivalent concepts. If a sequence of moves
from initial state to accepting state is given and if the length of the sequence
is polynomial (see Definition 9), then the sequence can also be verified in
polynomial time. Similarly, if a solution is verifiable in polynomial time then
there exists a sequence of moves from initial state to accepting state in an
NDTM of polynomial size.

From any of these two definition, we get that a problem is in P is also in
NP. Hence P ⊆ NP . However, the reverse is not yet known. In fact, it is
an open question to answer whether P = NP or not. Though, many believe
that P 6= NP .

19.6 NP-Completeness
A subclass of NP, named NP-Complete languages has been extracted from
NP which are known as the most difficult problem of NP. Existence of NP-
Complete language is sometime thought as an evidence that P 6= NP . To
define NP-Complete language, we next define the concept of Reducibility.

We say that a language L1 is reducible to another language L2 if there
exists an algorithm which transforms the words of L1 to the words of L2.
If the algorithm runs in polynomial time, we call that L1 is polynomially
reducible to L2. This is represented as L1 ≤P L2.

Definition 13 A language L1 is polynomially reducible to L2, (L1 ≤P L2)
if and only if there exists a polynomial-time algorithm which converts each
w ∈ L1 to w0 ∈ L2.

If L1 ≤P L2 and if L2 is acceptable in polynomial time (say, by a DTM),
then L1 is also acceptable in polynomial time (by some DTM). That is, L1

is not more than a polynomial factor harder than L2.

Definition 14 A language L is NP-Complete (NPC) if and only if:

1. L ∈ NP
2. L′ ≤P L for every L′ ∈ NP

Intuitively, there exists no problem in NP which is more than a polynomial
factor harder than an NP-Complete problem. So, if an NP-Complete problem



can be solved by a polynomial-time algorithm, then any problem of NP can
be solved by a polynomial-time algorithm. However, no polynomial-time
algorithm for an NP-Complete is invented till date.If we get an algorithm
some day, that would imply that any problem in NP can be solved by some
polynomial time algorithm. This would mean that P = NP .

The first problem that was proved as NP-Complete (by Stephen Cook in
1971) is the Boolean Satisfiability Problem, popularly called as SAT problem.
The problem is:

SAT Given a Boolean formula, decide if there exists an assignment (TRUE
or FALSE) to the variables such that the formula evaluates to TRUE.

For example, the formula (P1+P2).P3 is satisfiable because it is true for some
assignments, say P1 = 0 (FALSE), P2 = P3 = 1 (TRUE). Another formula
P1.P1 is not satisfiable. Now to show SAT as NP-Complete, we need to show
first that the SAT is in NP, and next we have to prove that an arbitrary
problem in NP can be polynomially reducible to SAT.

Theorem 13 : SAT is NP-Complete.

Proof : (1) SAT ∈ NP: Given a Boolean expression of length n, any
assignment of Boolean values to Boolean variables that is claimed to satisfy
the given expression can be verified in polynomial. In other words, an NDTM
can guess a truth assignment in polynomial time. Hence, SAT is in NP.
(2) For any language L′ ∈NP, L ≤PSAT : Let M be an NDTM which ac-
cepts a string w in polynomial time. That is, the language, accepted by the
NDTM is in NP. Consider that n = |w| and the time complexity of M is
p(n), a polynomial. Suppose that M uses q1, q2, · · · , qs states with q1 as the
initial state and qs as an accepting state, and X1, X2, · · · , Xm tape symbols.

Let us now construct a computation history of M as shown below. In the
computation, therefore, M uses at most p(n) cells.

In the above computation history, the cells used in the computation are
shown horizontally, whereas the time steps are plotted vertically. In the
initial configuration, some cells are used for state and input symbols (which
are also tape symbols) and the rest cells are blank. Name the history as
TABLE where TABLE[i][j] denotes the content of jth cell on the tape at
step i. Let us now introduce following propositional variables, which will
form a Boolean expression w0.



Tape
Steps 1 2 3 4 · · · p(n)

1 # q1 X1 X2 · · · #
2
3
... ... ... ... ... ... ...

p(n) qs

1. Ci,j,t = 1 iff TABLE[t][i] = Xj 1 ≤ i, t ≤ p(n)
That is, ith cell on M ’s tape contains the tape symbol Xj at time t.

2. Sk,t = 1 iff M is in state qk at time t.

3. Hi,t = 1 iff the tape head scanning tape cell i.

Hence, we can get O(p2(n)) propositional variables in total considering the
above computation history. Let us now construct a Boolean expression (w0)
using these variables such that the expression reflects an accepting computing
of M . To do so, consider the following predicate which is 1 when exactly one
of its argument is 1.

U(x1, x2, · · · , xr) = (x1 + x2 + · · ·+ xr)(
∏
i 6=j

(xi + xj))

Here, length of U is O(r2).
Now, in the computing history of M , we get the following.

1. The tape head is scanning exactly one cell in each step.

2. Each step has exactly one tape symbol in each tape cell.

3. Each step has exactly state.

4. At most one tape cell, the cell scanned by the tape head, is modified
from one step to the next.

5. The change in state, head location and tape cell contents between suc-
cessive steps is allowed by the transition function of M .



6. The first step is the initial configuration where M is in q1 and the tape
contains exactly w followed by blanks symbols.

7. The machine M is in accepting state at the last step.

We can now construct Boolean expression from the above points. From
point 1, we get At for step t, and so we get

A = A1.A2. · · · .Ap(n) where At = U(H1,t, H2,t, · · · , Hp(n),t)

Length of A is O(p3(n)). From point 2, we get the predicate Bit at time t
for cell i, and so we get

B =
∏
i,t

Bit where Bit = U(Ci,1,t, Ci,2,t, · · · , Ci,m,t)

Length of B is O(p2(n)). From point 3, we can get

C =
∏

1≤t≤p(n)

U(S1,t, S2,t, · · · , Ss,t)

length of which is O(p(n)). From point 4, we can similarly get that

D =
∏
i,j,t

[(Ci,j,t.Ci,j,t+1 + Ci,j,t.Ci,j,t+1) +Hi,t]

This means, either jth symbol of cell i remains same at t + 1 time step, or
the tape head is scanning cell i at t.

In this way, we can get predicates for the above properties of our comput-
ing history. Finally we get a predicate for the accepting state (point 7). Now
if we make a conjunction of all these predicates, we get a Boolean expression,
say w0. From our above construction, we can say that the Boolean formula
w0 is satisfiable if and only if M accepts w.

Hence, an arbitrary word of the language that M accepts can be reduced
to a word of SAT. Since p(n) is polynomial, length of w0 is polynomial and the
construction of w0 takes polynomial time.Therefore, the language accepted
by M is reducible to SAT in polynomial time. Since M is arbitrary, any
language of NP can be reduced to SAT in polynomial time.This completes
the proof. �



The above proof points out that if we get an efficient algorithm for SAT,
then to solve any problem in NP, we need to construct a Boolean expression
from the input of the given NP. This construction will take polynomial time.
Then, we can use the efficient algorithm to decide acceptability of the Boolean
expression. However, if we don’t get an efficient algorithm, but try to design
a DTM then the DTM can take exponential time to accept the language (see
Theorem 12).

After the proof of SAT as NP-Complete, many problems were shown as
NP-Complete. The way of showing a problem as NP-Complete is – first
show that the problem is in NP and then show that SAT (or any already-
proven NP-Complete problem) is reducible to the given problem. Some well-
known NP-Complete problems are the Clique problem, Hamiltonian cycle
problem, Travelling Salesman problem, etc. As already said, these problems
are treated as the most difficult problems in NP. Hence, NP-Complete ⊂ NP.
Since no efficient algorithm for an NP-Complete problem has been invented
and there is little hope to invent so, people believe that P ⊂ NP . Following is
the widely-believed relationship among P, NP and NP-Complete languages.

P

NPC

P

Apart from the NP-Complete problems, more difficult decidable prob-
lems exist.There are some problems which are called NP-hard. If all the
problems of NP are reducible to a problem L in polynomial time which is
not necessarily in NP, then L is called NP-hard. There is another class of
problems called PSPACE-Complete problems, which are believed as more
difficult than NP-Complete problems. These problems are not tractable and
demands exponential time by the best algorithms, available presently.
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