Semester-wise Course Structure for Aerospace Engineering 4-year B.Tech Programme from 2019-20 Session onward

1st Semester

S1.	Course Name	Cour	Class Load/Wee		Veek	Credit	Class	Mark
No		se					load/	s
		code					week	
			L	Т	Р			
1.	Mathematics – I		3	1	0	4	4	100
2.	Chemistry/Physics		3/4	0	0	3/4	3/4	100
3.	Intro to Computing/Basic		3/4	0	0	3/4	3/4	100
	Electrical Engineering							
4.	Mechanics/Ecology &		4/3	0	0	4/3	4/3	100
	Environment							
5.	English/Sociology &		3	0	0	3	3	100
	Professional Ethics							
	Theory Sub-total		16/	1	0	17/18	17/18	500
			17					
6.	Chemistry Lab/Physics Lab		0	0	3	2	3	50
7.	Computer Lab/ Electrical Lab		0	0	3	2	3	50
8.	Drawing/Workshop		0	1/0	3	3/2	4/3	50
9.	NSS/NCC/PT/Yoga					R*		
	Practical Sub-total		0	1/0	9	7/6	10/9	200
	First Semester Total					24	27	700

*R: Required (Non-credit but with grade)

2nd Semester

S1. No	Course Name	Cour se code	Class Load/Weel			Credit	Class load/ week	Mark s
			L	Т	Р			
1.	Mathematics – II		3	1	0	4	4	100
2.	Physics/Chemistry		4/3	0	0	4/3	4/3	100
3.	Basic Electrical Engineering/ Intro to Computing		4/3	0	0	4/3	4/3	100
4.	Ecology & Environment/ Mechanics		3/4	0	0	3/4	3/4	100
5.	Sociology & Professional Ethics/ English		3	0	0	3	3	100
	Theory Sub-total		17/ 16	1	0	18/17	18/17	500
6.	Physics Lab/Chemistry Lab		0	0	3	2	3	50
7.	Electrical Lab/Computer Lab		0	0	3	2	3	50
8.	Workshop/Drawing		0	0/1	3	2/3	3/4	50
9.	NSS/NCC/PT/Yoga					R*		
	Practical Sub-total		0	0/1	9	6/7	9/10	200
	Second Semester Total					24	27	700

*R: Required (Non-credit but with grade)

3rd Semester

S1.	Course Name	Course	Class Load/Week			Credi	Class	Marks
No		code				t	load/w	
				-	-		eek	
			L	Т	Р			
1.	Mathematics – III	MA 2101	3	0	0	3	3	100
2.	Fluid Dynamics	AE 2101	3	1	0	4	4	100
3.	Strength of Materials	AM 2101	4	0	0	4	4	100
4.	Dynamics	AM 2102	4	0	0	3	4	100
5.	Basic Flight Mechanics	AE 2102	4	0	0	3	4	100
	Theory Sub-total		18	1	NIL	17	19	500
6.	Fluid Dynamics Laboratory	AE 2171	0	0	3	2	3	50
7.	Strength of Materials	AM 2171	0	0	3	2	3	50
	Laboratory							
8.	Machine Drawing	AM 2172	0	0	3	2	3	50
9.	Seminar/Mini Project -I	AE 2191	0	0	0	2	0	50
	Sessional Sub-total		NIL	NIL	9	8	9	200
	3 rd Semester Total					25	28	700

4th Semester

S1.	Course Name	Course	Class Load/Week			Credi	Class	Marks
No		code				t	load/	
							week	
			L	Т	Р			
1.	Fundamentals of Viscous	AE 2201	3	1	0	4	4	100
0	Adversed Strength of		4	0	0	1	4	100
2.	Materials	AE 2202	4	0	0	4	4	100
3.	Theory of Vibration	AE 2203	3	0	0	3	3	100
4.	Engineering	AE 2204	4	0	0	4	4	100
	Thermodynamics							
5.	Aircraft Performance	AE 2205	3	0	0	3	3	100
	Theory Sub-total		17	1	NIL	18	18	500
6.	Computational Solid	AE 2271	0	0	3	2	3	50
	Mechanics Laboratory							
7.	CAD Laboratory	AE 2272	0	0	3	2	3	50
8.	Vibration Laboratory	AE 2273	0	0	3	2	3	50
9.	Mathematical Modeling and	AE 2274	0	0	3	2	3	50
	Simulation Laboratory							
	Sessional Sub-total		NIL	NIL	12	8	12	200
	4 th Semester Total					26	30	700

5th Semester

S1. No	Course Name	Course code	Class Load/Week			Credi t	Class load/	Marks
			L	Т	Р		WEEK	
1.	Low Speed Aerodynamics	AE 3101	4	0	0	4	4	100
2.	Aircraft Stability and Control	AE 3102	4	0	0	4	4	100
3.	Numerical Method and Computational Tools	AE 3103	4	0	0	4	4	100
4.	Aircraft Dynamics and Navigation	AE 3104	4	0	0	4	4	100
5.	Composites and Structures	AE 3105	3	0	0	3	3	100
	Theory Sub-total		19	NIL	NIL	19	19	500
6.	Low Speed Aerodynamics Laboratory	AE 3171	0	0	3	2	3	50
7.	Aircraft Stability and Control Laboratory	AE 3172	0	0	3	2	3	50
8.	Numerical Method and Computational Tools Laboratory	AE 3173	0	0	3	2	3	50
	Sessional Sub-total		NIL	NIL	9	6	9	150
	5 th Semester Total					25	28	650

6th Semester

S1.	Course Name	Course	Class Load/Weel			Credi	Class	Marks
No		code				t	load/	
							Week	
			L	Т	Р			
1.	High Speed Aerodynamics	AE 3201	4	0	0	4	4	100
2.	Theory of Propulsion	AE 3202	4	0	0	4	4	100
3.	Aerospace Structures	AE 3203	4	0	0	4	4	100
4.	Introduction to FEM and	AE 3204	4	0	0	4	4	100
	Applications							
5.	Orbital Mechanics	AE 3205	4	0	0	4	4	100
	Theory Sub-total		20	NIL	NIL	20	20	500
6.	High Speed Aerodynamics	AE 3271	0	0	3	2	3	50
	Laboratory							
7.	Propulsion Laboratory	AE 3272	0	0	3	2	3	50
8.	Aircraft Design and Flight	AE 3273	0	0	3	2	3	50
	Training							
	Sessional Sub-total		NIL	NIL	9	6	9	150
	6 th Semester Total					26	29	650

7th Semester

S1.	Course Name	Course	Class Load/Week			Credi	Class	Marks
No		code				t	load/	
							Week	
			L	Т	Р			
1.	Computational Fluid	AE 4101	4	0	0	4	4	100
	Dynamics							
2.	Jet and Rocket Propulsion	AE 4102	4	0	0	3	4	100
3.	Core Elective – I	(LIST-I)	3	0	0	3	3	100
	(LIST-I)							
4.	Open Elective – I (HSS-II)		3	0	0	3	3	100
	Theory Sub-total		14	NIL	NIL	13	14	400
6.	Aerospace Structures	AE 4171	0	0	3	2	3	50
	Laboratory							
7.	Aircraft Design and	AE 4172	0	0	4	2	4	50
	Manufacturing Techniques							
8.	B. Tech Project/1	AE4191	0	0	0	4	2	100
9.	Internship from 6 th Sem	AE4192	0	0	0	2	0	50
	(Evaluation)							
	Sessional Sub-total		NIL	NIL	7	10	9	250
	7 th Semester Total					23	23	650

(LIST-I) (Core Elective – I)

- Aerospace Structural Dynamics (AE 4121)
 Satellite Attitude Dynamics (AE 4122)

8th semester

S1.	Course Name	Course	Class Load/Week Cree			Credi	Class	Marks
No		code				t	load/	
							Week	
			L	Т	Р			
1.	Turbulent Flow	AE 4201	4	0	0	3	4	100
2.	Core Elective – II	(LIST-II)	3	0	0	3	3	100
	(LIST-II)							
3.	Open Elective II	(LIST-III)	3	0	0	3	3	100
	(LIST-III)							
	Theory Sub-total		10	NIL	NIL	9	10	300
4.	B. Tech Project /2	AE 4291	0	0	0	8	2	200
5.	Seminar	AE 4292	0	0	0	2	0	50
6.	Comprehensive Viva	AE 4293	0	0	0	2	0	100
	Sessional Sub-total		NIL	NIL	NIL	12	2	350
	8 th Semester Total					21	12	650
		TOTAL						

(LIST-II) (Core Elective -II)

- 1. Spacecraft Dynamics (AE 4221)
- 2. Fracture Mechanics (AE 4222)
- 3. Aeroelasticity (AE 4223)
- 4. Fundamentals of Combustion in Propulsion (AE 4224)
- 5. Aircraft Dynamics A Modeling Approach (AE 4225)
- 6. Computational Low Speed Aerodynamics (AE 4226)
- 7. Mechatronics and Avionics (AE 4227)

(LIST-III) (Open Elective II)

- 1. Finite Element Method (AE 4261)
- 2. Nonlinear Dynamics (AE 4262)
- 3. Basics of Parallel Computation (AE 4263)

Total credit:	24	+ 24 +	25 +	26 +	25 +	26 +	23 -	21 = 2	194
Semester:	1	2	3	4	5	6	7	8	

3rd SEMESTER SYLLABUS

B. TECH IN AEROSPACE ENGINEERING

FLUID DYNAMICS (AE 2101)

(Only for AE)

Contact Period: 3L + 1T per week

Full Marks:100 [Credit – 4]

Prerequisites: Engineering Mechanics, Mathematics (ODE, PDE, Vector Calculus)

SI	Article	No. of
No.		Classes
1 Introducto motion, pa dimensions statics, ma linear acce	bry concepts: Continuum approximation; Lagrangian and Eulerian description of article derivative; Fluid properties (viscosity, compressibility, speed of sound), and units; Flow visualization; Classification of fluid flow; Basic equation of fluid nometers, pressure variation in atmosphere; Fluids in rigid-body motion - uniform leration and rigid-body rotation	6+3*
2 Control v Conservati forces on correction reference f	olume analysis: System and control volume, Reynolds transport theorem, on equations for mass, momentum and energy in integral form, body and surface a C.V., continuity and momentum balance in unidirectional flow, momentum factor, steady mechanical energy balance; Idealized theory of propeller; Noninertial rame (e.g. rocket motion)	8+3*
3 Differentia spherical deformatio tensor, acc momentum Stokes equ flow and P	al analysis of fluid motion: Continuity equation in Cartesian, cylindrical and reference frames, Stream function; Kinematics - translation, rotation and ns of a fluid element, vorticity, volume dilation, incompressible flow, rate of strain eleration of a particle; Equation of motion - stress at a point, mean pressure, a conservation equation from an infinitesimal C.V., Stokes' law of viscosity, Navieration, exact solutions for incompressible flow in a parallel plate channel (Couette oiseuille flow), circular pipe (Hagen-Poiseuille flow).	12 + 2*
4 Inviscid fle to streamli velocity po line vortex Bernoulli's	by theory: 3D Euler's equation, equations of motion along a streamline and normal ne direction, unsteady Bernoulli's equation; Potential flow - Irrotational flow and tential, elementary potential flow patterns – uniform stream, line source and sink, Principle of superposition (flow past a Rankine half body); Equation of motion and e equation for potential flow	6 + 2*
5 Internal in energy com rate-pressu pipe fitting measurem orificemete	acompressible flow: Incorporation of viscous loss terms in Bernoulli's eq., kinetic rection factor; Darcy's equation for fully developed pipe flow, Moody diagram, flow re drop relations for laminar and turbulent flow, hydraulic diameter, minor losses at gs (sudden expansion, sudden contraction, flow through an orifice, etc.); Flow ents (application of Bernoulli's theory) – Pitot tube and Pitot-static tube, er, venturimeter	7 + 3*
	Total	52

*Number of classes dedicated for solving Tutorial problems

Books:

R W Fox and A T McDonald, Introduction to Fluid Mechanics, Wiley India

F M White, Fluid Mechanics, McGraw-Hill International

Strength of Materials (AM 2101) (Common Course for AE & ME)

Contact Period: 4L per week

Full Marks: 100 [Credit – 04]

Sl	Article	No. of
No.		Classes
1.	Stress, Strain, stress at a point, stress-strain diagrams of ductile and brittle materials,	03
	Hooke's Law, Factor of Safety	
2.	Elastic constants, Poisson's ratio, pure shear, shear modulus, bulk modulus, relation	04
	among the Elastic constants	
3.	Problems related to stress and strains, thermal stress problems	04
4.	Bi-axial stress, principal stress and strain, thin-walled pressure vessels, rings subjected	04
	to internal pressure	
5.	Shear force and bending moment diagrams, bending of beams due to transverse load,	09
	Euler-Bernoulli's Equation, section modulus, simple bending formula, applications	
6.	Shear stresses in beams, built-up sections, stiffened sections	05
7.	Complex stress and strain, Mohr's circle	05
8.	Torsion of circular shaft & applications	03
9.	Combined bending, torsion and axial thrust & applications	03
10.	Deflection of beams subjected to transverse forces – integration method, area-moment	05
	theorems	
11	Energy method – Castigliano's theorem	03
12	Elastic theories of failure & applications	04
	Total	52

Text Book: 1. Elements of Strength of Materials - S.P. Timoshenko and D.H. Young.

<u>Reference Books</u>:

- 1. Mechanics of Materials E. Popov
- 2. A Text Book of Strength of Materials R.K. Bansal
- 3. Strength of Materials F.P. Beer and E.R. Johnston Jr.
- 4. Strength of Materials (Vol. 1) D.S. Prakash Rao

Dynamics (AM 2102) (Common Course for AE & ME)

Contact Period: 4L per week Prerequisite: Engineering Mechanics

Full Marks: 100 [Credit – 03]

Sl	Article	No. of
No.		Classes
1.	Introduction : Kinematics and dynamics, frames of reference, coordinate	02
	systems, particle and rigid bodies, scalars, vectors and tensors, Illustrative	
	problems	
2.	Kinetics of systems of particles and variables mass problems	10
	Illustrative problems	
3.	Kinetics of particles in accelerating frame of reference :	08
	• Frames with Linear Acceleration, D'Alembert's Principle	
	Motion in Rotating Frame of Reference	
	Illustrative problems	
4.	Dynamics of rigid bodies in plane motion :	15
	Definition of Rigid Bodies and Kinematic constraints	
	• Kinematics of Rigid Bodies – Translational Motion, Pure Rotation and	
	General Motion	
	Linear and Angular Momentum, Kinetic energy	
	• FBD and Laws of Motion	
	• Conservation Principles – linear and angular Momentum, Energy	
	Impulsive Forces and Moments	
	Illustrative problems	
5.	Dynamics of Motion in Three-dimension :	17
	Chasle's Theorem and Spheric Motion	
	Angular Momentum and Inertia Tensor, Kinetic Energy	
	• Free Motion of an Axisymmetric Body – Body cone and Space cone	
	• Euler's Equation, Modified Euler's Equation, Euler Angles, Gyroscopic	
	Acion.	
	Illustrative problems	
	Total	52

Books:

1. Engineering Mechanics: Dynamics – Meriam & Kraige

Basic Flight Mechanics (AE 2102) (Only for AE)

Contact Period : 4L per week

Full Marks : 100 [Credit - 03]

Prerequisite : None

	Airfoils, Wings and Other Aerodynamic Shapes:	
1.	Airfoil Nomenclature; Finite Wings; Swept Wings; Delta Wings; Mechanisms for	04
	High Lift.	
2	Aerodynamic Interactions:	07
	Force, Moment and Pressure Coefficients; Lift and Drag, Drag Polar	
	Elements of Propulsion:	
3	Introduction; Propeller; Reciprocating Engine; Jet Propulsion; Turbojet Engines;	07
	Turbofan Engines	
	Elements of Compressible Flow:	
4	One Dimensional Flow Equations of Conservation Principles; SomeConveniently	0.4
4	Defined Flow Parameters; Alternative Forms of Energy Equations; Normal and	04
	Oblique Shock Relations;	
-	Static Stability and Control:	
5	Basic Concepts of Airplane Stability and Control; Static Stability and Dynamic	02
	Stability; Controllability.	
	Longitudinal Stick–Fixed Static Stability and Control:	
C	Criterion of Longitudinal Static Stability, Contribution of Aircraft Components,	04
0	Wing Contribution, Horizontal Tail Contribution, Fuselage Contribution, Power	04
	Plan Contribution, Stick-Fixed Neutral Point, StaticMargin.	
	Longitudinal Control	
7	Elevator, Elevator Power, Elevator Effectiveness, Elevator Angle to Trim.	04
	Longitudinal Stick-Free Static Stability	
	Hinge Moments and Effect of Freeing the Stick, Trim Tab, Stick Forces and Stick	
8	Force Gradients, Analysis of Stick-Free Static Stability, Floating Angle of Elevator,	06
0	Static Stability in Stick-Free Condition, Stick-Free Neutral Point, Effect of	00
	Acceleration, Stick-Fixed Manoeuvre Point; StickForce Gradient in Pull-Up; Stick-	
	Free Manoeuvre Point.	
	Directional Static Stability and Control	
	Criteria of Directional Static Stability, Side Slip and Yaw, Contribution of Wing,	
	Fuselage, Power and Vertical Tail to Directional Stability, Pedal Fixed and Pedal-	00
9	Free Directional Stability, Directional Control, Adverse Yaw and Cross Wind Take-	08
	off and Landing, Control in asymmetric power, steady flight after engine failure and	
	infinitium control speed, need for rudder deflection in a coordinated turn, Effect of	
10	Lateral Static Stability and Control	06
10	Lateral Static Stability and Control	00

Criteria of Lateral Static Stability, Rolling Moment, Dihedral Effect and Contributions of Wing, Fuselage, Vertical Tail, Propeller and Flaps, Roll Control, Aileron, Rolling Moment due to Aileron, Damping Moment, Rateof Roll, Aileron Power, Aerodynamic Balancing, Tabs, Elevons.	
Total	52

Books:

- 1. Introduction to flight –JD Anderson
- 2. Flight without formula-AC Kermode
- 3. Mechanics of Flight W. F. Philips, Willey India
- 4. Flight Mechanics and Automatic control- RC Nelson

FLUID DYNAMICS LABORATORY (AE 2171) (Only for AE)

Contact	Period: 0L-0T-3P per week Full Marks: 50 [Cre	edit – 02]
Sl No.	Name of experiments	No. of Classes
1.	Verification of Bernoulli's theorem	03
2.	Force of impact of jet on vanes	03
	Viva voce on experiments 1 and 2	03
3.	Reynolds experiment	03
4.	Calibration of an orifice meter	03
	Viva voce on experiments 3 and 4	03
5.	Determination of orifice coefficients	03
6.	Determination of settling velocity of spheres	03
	Viva voce on experiments 5 and 6	03
7.	Friction losses in commercial pipes	03
8.	Investigation of the boundary layer on a flat plate with and without pressure gradient	03
9.	Arrear class	03
	Viva voce on experiments 7, 8 and arrear	03
	Total	39

Strength of Materials Laboratory (AM 2171) (Common for AE& ME)

Contact Period : 0L-0T-3P

Full Marks : 50 [Credit – 02]

S1	Name of experiments	No. of
No.		Classes
1.	Introduction to Equipment and Facilities	03
2.	Rockwell Hardness Test	03
3.	Brinell Hardness Test	03
4.	Tension Test of Metals	06
5.	Experiment on Strain Hardening of Metals	03
6.	Torsion Test of Circular Shaft	03
7.	Experiment on Impact Test	03
8.	Buckling or Critical Load for Long Column	03
9.	Fatigue Testing of Metals (Lecture & Demonstration)	03
10.	Measurement of Beam Deflection Using Dial Gauge	03
	End Test	03
	Viva voce	03
Tota	1	39

Machine Drawing (AM 2172)

(Common course for AE & ME)

Full paper: 0L - 0T - 3SFull Marks: 50 [Credit - 02]Prerequisite: Elementary Knowledge of Engineering Drawing

Sl.	Article	No. of
		Classes
1.	Development of Surfaces	06
2.	Rivet Joints, Nuts & Bolts	06
3.	Interpenetration of Solids	06
4.	Section of Machine Parts	03
5.	Component drawing and Assembly drawing of	15
	Machines	
6	End Test	3
	Total	39

<u>Suggested readings:</u> 1. Engineering Drawing – N.D. Bhatt

- 2. Engineering Graphics Venugopal
- 3. Machine Drawing N.D. Bhatt

Mini Project I (AE 2191)

Full Marks: 50 [Credit – 02]

This will be individual/small group project on simple Aerospace Engineering problems, primarily to be acquainted with complete problem solving and report writing practice.

4th SEMESTER SYLLABUS

B. TECH IN AEROSPACE ENGINEERING

Fundamentals of Viscous Flow (AE 2201)

(Only for AE)

Contact Period: 3L + 1T per week 4]

Full Marks: 100 [Credit -

Prerequisites: Fluid Dynamics (AE2101)

Sl No.	Article	No. of Classes
1	Dimensional analysis and Similitude: Buckingham's Pi theorem; Nondimensionalisation of Navier-Stokes equations: emergence of dimensionless parameters and their physical interpretation; Similitude - geometric, kinematic and dynamic similarity, model testing in laboratory	5 + 2*
2	Analytical solution of equation of motion : boundary conditions for viscous flow, examples of steady laminar flow driven by shear, pressure gradient, and gravity, flow between concentric cylinders, unsteady flow – Stokes' 1 st problem (similarity solution), low-Re flow (creeping motion) over a sphere; Lubrication theory	9 + 1*
3	Boundary layer theory and related topics : Boundary layer approximation, Laminar boundary layer equations and characteristic boundary layer thickness, scaling estimates of wall shear and friction coefficients (local and overall), displacement thickness and momentum thickness; Integral method : Von Karman momentum integral equation and its applications; Exact solution (similarity method) of laminar boundary layer eq. over a flat plate; Boundary layer transition, Turbulent boundary layer equations, structure of turbulent boundary layer – wall layer, outer layer and overlap layer, viscous sublayer, hydraulically smooth and rough surfaces, Integral estimates for turbulent boundary layer flow over a flat plate, Boundary layer separation : effect of pressure gradient on boundary layer velocity profile, Prediction of laminar separation point (Thwaites' correlation-based method), Methods of preventing/delaying boundary layer separation	11 + 3*
4	Flow over Immersed Bodies : forces and moments on a body, drag and lift, friction and pressure drag, streamlined body and blunt body; Flow past a smooth cylinder (different Reynolds number regimes, vortex street and Strouhal number, C_D vs. Re plot), force coefficients and characteristic area for some regular and irregular shaped bodies, Forces on lifting bodies : aircraft and airfoil, aerodynamics of sports ball (cricket and golf)	4 + 3*
5	Thermal boundary layer and heat transfer: Energy equation; Forced convection – thermal boundary layer equation, Reynolds' analogy, flat plate in parallel flow (solution by energy integral method), correlations for turbulent flow, cylinder in cross flow; Internal flows – concept of thermally fully developed flow, fully developed channel flow with constant wall heat flux and viscous dissipation, turbulent flow in pipes; Free convection along a vertical isothermal plate – governing equation, recognition of dimensionless terms, and solution by integral method.	10 + 4*
	Total	52

*Number of classes dedicated for solving Tutorial problems

Books:

- 1. Viscous Fluid Flow, F.M. White, McGraw-Hill International.
- 2. Boundary Layer Theory, H. Schlichting, McGraw-Hill.
- 3. Fundamentals of Heat and Mass Transfer F. P. Incropera and D. P. Dewitt, John Wiley.
- 4. An Introduction to Fluid Dynamics, G.K. Batchelor, Cambridge University Press.

Advanced Strength of Materials (AE 2202) (Only for AE)

Contact Period: 4L per week

Full Marks: 100 [Credit – 4]

Prerequisites: Strength of Materials

Sl.	Article	No. of
No.		Classes
1	Basic Elasticity : Introduction to tensor – generalized coordinate	11
	transformation – stress tensor at a point – principal stress & stress invariant –	
	analysis of strain – constitutive & compatibility equation in 3D Cartesian	
	coordinate – introduction to plane stress – introduction to plane strain.	
2	Virtual Work: Principle of VW for particle & rigid body – VW done by axial	11
	forces, shear forces, bending moment and torsion – application to beams and	
	trusses	
3	Energy Methods : Strain energy due to axial force, bending and torsion with	15
	applications – Complimentary energy – total potential energy; total	
	complimentary energy and principles of stationary value – application to	
	determinate & indeterminate problems (beams, frames, rings)	
4	Structural Instability : Short and long columns, critical load, column with	15
	eccentric loading – transversely loaded column (beam-column) – energy	
	method for buckling loads in column – effect of initial imperfection in column	
	& Southwell plot – complete diagonal tension field beam – incomplete diagonal	
	tension field beam – applications.	
	Total	52

Books recommended:

- 1. Elasticity, Martin H. Sadd
- 2. Theory of Elasticity, Timoshenko & Goodier
- 3. Aircraft Structures, T.H.G. Megson
- 4. Applied Elasticity, Zhi Lun Xu
- 5. Foundations of Solid Mechanics, Y.C. Fung

Theory of Vibration (AE 2203) (Only for AE)

Contact Period : 3L per week

Full Marks : 100 [Credit - 03]

Prerequisite : Engineering Mechanics and Strength of Materials Utility: This course provides the basic knowledge of vibration and control of vibration which

will be required for design of engineering machines and structures.

Sl	Article	No. of
No.		Classes
1.	Introduction; Oscillatory motion - Harmonic motion, Periodic motion,	02
	Vibration Terminology	
2.	Free Vibration of Single Degree of Freedom System : Vibration model and	05
	equations of motion, Natural frequency, Energy method, Rayleigh method,	
	Different Kinds of Damping	
3.	Forced vibration of Single Degree of Freedom System: Forced harmonic	08
	vibration, Rotating unbalance, Rotor unbalance, Whirling of rotating shafts,	
	Support motion, Vibration isolation, Energy dissipation, Vibration measuring	
	instruments	
4.	Multi-degree of freedom systems: Normal mode vibration, Coordinate	06
	coupling, Forced harmonic excitation	
5.	Properties of vibrating systems: Flexibility matrix, Stiffness matrix, Stiffness	10
	of beam elements, Eigenvalues and eigenvectors, Orthogona properties of	
	eigenvectors, Modal matrix, Modal damping in forced vibration	
6.	Normal mode vibration of continuous systems: Vibrations of rods, Euler	05
	equation of beams	
7.	Approximate numerical methods: Rayleigh method, Dunkerley's method	03
	Total	39

Books:

1. W T Thompson, Theory of Vibration with Applications, George Allen

- 2. L Meirovitch, Analytical Methods in Vibration, MacMillan
- 3. A C Fung, Introduction to Aeroelasticity,
- 4. R L Bisplinghoff, H Ashley, Principle of Aeroelasticity, Wiley
- 5. E H Dowell and H C Curtiss, A Modern Course on Aeroelasticity, Kluwer Academic Publishers

ENGINEERING THERMODYNAMICS (AE 2204) (Only for AE)

Contact Period: 4L per week Prerequisite: None

Full Marks: 100 [Credit – 4]

Sl No.	Article	No. of Classes
1.	Introduction to classical thermodynamics: Energy conversion, Internal	03
	energy, Microscopic vs. Macroscopic viewpoint; Thermodynamic system and	
	control volume, Properties and State of a substance, Processes and Cycles;	
	Thermodynamic equilibrium, The Zeroth law of thermodynamics; Quasi-	
	equilibrium process	
2.	Properties of a pure substance: Phase equilibrium in a pure substance,	02
	Thermodynamic surfaces, Equation of State, Thermodynamic tables	
3.	Work and Heat interactions: Work, Simple compressible system, Work done	03
	at a moving boundary; Other modes of work transfer; Heat, Comparison of heat	
	and work.	
4.	First law of thermodynamics : 1 st law for a Cycle, 1 st law for a control mass,	06
	Internal energy – a thermodynamic property, Enthalpy, Specific heats; 1 st law for	
	a control volume – the steady-state steady-flow (SSSF) model, the transient flow	
	model, and their applications.	
5.	Second law of thermodynamics : Limitations of 1 st law, Statements of 2 nd law	10
	of thermodynamics, 1 st law (thermal) efficiency and C.O.P; Reversible and	
	irreversible processes; The Carnot cycle; Thermodynamic temperature scale;	
	Inequality of Clausius, Entropy – a thermodynamic property, 2 nd law equation	
	for a control mass, Principle of the increase of entropy; Thermodynamic property	
	relations, Reversible polytropic processes for an ideal gas; 2 nd law equation for a	
	control volume - The steady-state steady-flow (SSSF) model, the transient flow	
	model; Thermal efficiencies of nozzle, turbine and compressor.	
6.	Irreversibility and Availability: Reversible work, Evaluating irreversibility in	06
	a general transport process, Availability or Exergy, Exergy balance for a closed	
	system, Exergy balance for control volumes at steady state, 2 nd law efficiency,	
	The Maxwell relations; Behaviour of real gases	
7.	Power cycles: Rankine cycle; Brayton cycle, regenerator, Air standard cycle for	06
	jet propulsion; Working principle of Spark-ignition and Compression-ignition	
	engines, Otto cycle, Diesel cycle	
8.	Elements of Heat Transfer: Modes of heat transfer, Derivation of generalized	10
	equation in Cartesian, cylindrical and spherical coordinates.	
	Conduction: Fourier's law, One dimensional steady state conduction, heat	
	conduction through plane and composite walls, cylinders and spheres, critical	
	radius of insulation for cylinder and sphere, lumped heat capacity analysis,	
	transient heat conduction in solids, types of fin, heat flow through rectangular	
	fin, infinitely long fin, fin insulated at the tip and fin losing heat at the tip.	
	Radiation: Absorptivity, reflectivity and transmissivity, black, white and grey	
	body, emissive power and emissivity, laws of radiation - Planck, Stefan-	
	Boltzmann, Wein's displacement, Kirchhoff's law, Lambert's cosine law,	
	Radiation heat exchange between black bodies, shape factor.	

9.	Combustion thermodynamics: Mixture of ideal gases, fugacity; Fuels,	06
	Combustion process, Enthalpy of formation, First-law analysis of reacting	
	systems, Adiabatic flame temperature, Higher and lower heating value; Third law	
	of thermodynamics	
	Total	52

Books recommended:

1. Fundamentals of classical thermodynamics - G.J. Van Wylen & R.R. Sonntag, Wiley

2. Engineering Thermodynamics – P. K. Nag, Tata-McGraw Hill

3. Internal Combustion Engines - V. Ganesan, McGraw Hill India Pvt. Ltd.

Aircraft Performance (AE 2205) (Only for AE)

Contact Period : 3L per week Prerequisite : Basic Flight Dyanmics , Dynamics Full Marks : 100 [Credit - 03]

S1.	Article	No. of
		classes
1	Introduction	01
4	Airplane Performance:	02
	The Equation of Motion	
5	Airplane Performance in Steady Flight:	18
	Equations; Thrust required; Fundamental Parameters; Thrust available and	
	maximum velocity; Power required, Power available and maximum velocity;	
	Rate and Time to climb; Range and Endurance. Problems	
6	Airplane Performance in Accelerated Flight:	18
	Level Turn; Pull-up and Pull-down Maneuvers; Energy Concepts – Accelerated	
	Rate of Climb; Take off Performance; Landing Performance. Problems	
	Total	39

Books recommended :

1. Aircraft Performance and Design, J. D. Anderson, Jr., McGraw-Hill

<u>Computational Solid Mechanics Laboratory (AE 2271)</u> (Only for AE)

Full Marks: 50 [Credit – 02]

Contact Period: 0L-0T-3P per week

Prerequisite: Strength of Materials

S1	Name of experiments	No. of
No.		Classes
1	Introduction, discretization, approximation and exact solutions, development of stiffness matrix of spring and bar elements and their assembling's	06
2	Introduction to ANSYS Workbench, pre-processing, meshing, structural analysis, post-processing	03
3	Exercises using ANSYS Workbench: stress concentration problems, contact of aircraft engine blade and disc, deflections of an aircraft wing box	09
4	Introduction to ANSYS APDL, pre-processing, solution, general post-processing	06
5	2D and 3D Problems using ANSYS APDL	12
	Viva voce	3
Total		39

References: 1. A First Course in the Finite Element Method, Daryl L. Logan, 5th edition, 2012 2. ANSYS 19.2 documentation

<u>CAD Laboratory (AE 2272)</u> (Only for AE)

Contact Period : 0L- 0T- 3P per week

Full Marks : 50 [Credit – 02]

Prerequisite: NIL

S1	Name of experiments	No. of	
No.		Classes	
1	Introduction to CAD, Geometric Modelling, Parameterization, 2D and 3D	36	
	Modelling using relevant CAD packages: Exercises		
	Viva voce	3	
	Total	39	

(Only for AE)

Contact Period : 0L- 0T-3P per week

Full Marks : 50 [Credit – 02]

Sl	Name of experiments	No. of
No.		Classes
1.	Introduction to Different Components of Fundamental Vibration Trainer	03
2.	Detailed demonstration of Software related to Different Experiments	03
3.	Familiarisation to Data Acquisition Device	03
4.	Demonstration of different components of Work Bench	03
5.	Experiment onVibration of Single DOF Systems – i) Basic Characteristics,	03
	ii) Harmonic Excitation	
6.	Determination of Damping ratio for SDOF system with damped vibration	03
7.	Base Excitation Experiment	03
8.	Reporting on experiments of SDOF systems	03
9.	Experiment on Vibration of Two DOF Systems	03
10.	Experiment on Torsional Vibration	03
11.	Beam Lateral Vibration - Concept of ODS	03
12.	Demonstration of Tuned Mass Damper System	03
13.	Viva voce	03
	Total	39

<u>Mathematical Modeling and Simulation Laboratory (AE 2274)</u> (Only for AE)

Contact Period: 0L-0T-3P per week

Full Marks : 50 [Credit – 02]

Pre-requisite: Knowledge of Computer Programming and Higher Mathematics

Objective: Numerical solutions of linear and non-linear algebraic equations, ordinary differential equations and partial differential equations; Problem solving related to Aerospace Engineering using software tools.

Sl. No.	Name of the Experiment	No. of classes
1.	Introduction to Matlab and Simulink	3
2.	Introduction to LabVIEW and Solid works	3
3.	Introduction to C programming and Graphics	3
4.	Modeling and simulation of deflection of beam under different	3
	loading condition	
5.	Simulation of motion of free fall with air resistance (parachute)	3
6.	Model and simulate the motion of crank-connecting rod and four	3
	bar mechanism	
7.	Forward kinematics, inverse kinematics and dynamics of a two-link	3
	planner system	
8.	Modeling the motion characteristics of spring-mass-damper (over-	3
	damped, under-damped and critically damped) system	

9.	Solution of second order differential equation (ODE) for servo	3
	motor control	
10.	Moving object detection and tracking	3
11.	Dynamics of bouncing ball in Virtual Reality environment	3
12.	Modeling, simulation and analyzing tools in Aerospace Engineering	3
13.	End Test and viva examination	3
		Total class:
		39

5th SEMESTER SYLLABUS

B. TECH IN AEROSPACE ENGINEERING

Low Speed Aerodynamics (AE 3101) (Only for AE)

Contact Period : 4L per week

Full Marks : 100 [Credit – 04]

Prerequisite : Elementary knowledge of Fluid Mechanics

Sl	Article	No. of
No.		Classes
1	Equations in Ideal flow: Rotational and Irrotational flow; velocity potential, Circulation and vorticity, vortex tube, Kelvin's circulation theorem, Stokes' Integral Theorem; Generalised Bernoulli's equation.	6
2	Applications: Examples of 2D potential flow, Laplace equation and principle of superposition, flow around a non-lifting cylinder, lifting cylinder, Complex Potential Function and Conformal mapping, Solution of 2D potential flow problems using complex analysis, Flow with Circulation; Kutta–Joukowski theorem; The Joukowski transformation and Joukowski airfoils; Vortex Motion.	12
3	Incompressible flow over airfoils and finite wings: Classical Aerofoil Theory – Camber and Thickness Problems; Downwash and induced drag, Biot-savart law and Helmholtz's theorems; Prandtl's lifting line theory; Lifting surface theory.	14
4	Computational methods: Source and Vortex Panel Methods.Vortex lattice method; 3D source and Doublet; Algorithm and development of panel method code.	10
5	Wind Tunnel Testing: Classification and types; special problems of testing; Layouts; sizing and design parameters, Model mount, Model fabrication, Forces/moments measurements and balance calibration, Pressure measurements - Pressure scanners and data acquisition, Multi-holes probes, Velocity measurements – Pitot tube, Hot wire anemometry, laser techniques, Particle Image Velocimetry (PIV); visualization techniques - smoke, Tufts, Pressure sensitive paint, laser sheet, and surface oil flow.	10
	Total	52

Books recommended:

- 1. J D Anderson, Jr., Fundamentals of Aerodynamics, McGraw-Hill International
- 2. E L Houghton and A E Brock, Aerodynamics for Engineering Students, Edward Arnold
- 3. E L Houghton and N B Carpenter, Aerodynamics for Engineering Students, Edward Arnold
- 4. J Katz and A E Plotkin, Low Speed Aerodynamics, Cambridge University Press
- 5. Rae, W.H. and Pope, A., "Low Speed Wind Tunnel Testing", John Wiley Publication, 1984.

<u>Aircraft Stability and Control (AE 3102)</u> (Only for AE)

Contact Period : 4L Per Week

Full Marks : 100 [Credit – 04]

Prerequisite : Static Stability of Aircraft

Sl	Article	No. of
No.		Classes
1.	Introduction: Basic Terminologies of Control System; Transfer Function;	08
	Block Diagram; Open Loop and Closed Loop Transfer Function; State Space	
	Analysis; procedural steps for solving physical systems through state variable	
	approach; State Transition Matrix; Relationship between Transfer Function	
	and State Space Equation	
2.	Stability: Introduction; The Characteristics Equation; The Routh-Hurwitz	10
	Stability Criterion; Time Domain Analysis; Frequency Response; Stability	
	and relative stability using Root Locus approach; Bode Plot; Nyquist Stability	
	Criterion	
3.	PID Controllers: Response of First Order and Second Order Systems with	04
	Proportional (P), Derivative (D), Integral (I), PD, PI, PID Control	
4.	Optimal Control Design: Linear Quadratic Regulator (LQR) Design	04
5.	Linearised Longitudinal Dynamics:	06
	Fundamentals of Dynamics – Eigenvalue Problems; Longitudinal Motion:	
	The Linearised Coupled Equations; Short Period Approximation; Long Period	
	Approximation; Pure Pitching Motion	
6.	Linearised Lateral dynamics:	10
	Lateral Motion – The Linearised Coupled Equations; Roll Approximation;	
	Spiral Approximation; Dutch Roll Approximation; Pure Rolling Motion; Pure	
	Yawing Motion; Longitudinal-Lateral Coupling; Nonlinear Effects	
7.	Flying and Handling Qualities:	04
	Introduction; Short Term Dynamic Models; Flying Qualities Requirements;	
	Aircraft Role; Longitudinal Flying Qualities Requirements; Control	
	Anticipation Parameter; Lateral Directional Flying Qualities Requirements;	
	Flying Qualities Requirements on the s-Plane	
8.	Stability Augmentation:	06
	Introduction; Augmentation System Design; Closed Loop System Analysis;	
	The Root Locus Plot; Longitudinal Stability Augmentation; Lateral-	
	directional Stability Augmentation; The Pole Placement Method.	
	Total	52

Books:

1. Flight Stability and Automatic Control by Robert Nelson, McGraw Hill 2nd Edition

2. Aircraft Dynamics from Modeling to Simulation *by* Marcello R. Napolitano, John Wiley & Sons, Inc.

3. Aircraft Flight Dynamics and Automatic Flight Control *by* Part I & Part II by Jan Roskam, Darcorporation; Reprint edition (January 2001).

4. Mechanics of flight by Phillips, W.R. .2nd Edition John Wiley 2010.

5. Flight Dynamics Principles by M.V.Cook, John Wiley & Sons Inc.

6. Modern Control Engineering by Katsuhiko Ogata.

7. N. S. Nise: Control Systems Engineering, 4th Ed., Wiley, 2004.

Numerical Methods and Computational Tools (AE 3103) (Only for AE)

Contact Period : 4L per week Prerequisite : Elementary knowledge of mathematics

Full Marks : 100 [Credit – 04]

S 1	Artiolo	No. of
51.	Aiticle	classes
1	Solution for linear systems of equation:	12
1.	Flementary definitions related to matrix operation – matrix norm – consistency	12
	of the system $-$ stability of the system $-$ diagonal dominance & positive	
	definiteness – direct methods of solution (inversion Gauss method with	
	normal & partial pivoting. Gauss-Jordan method, LU decomposition. Cholesky	
	decomposition) – iterative methods and convergence study (Gauss-Siedel.	
	Jacobi) – application to physical systems and development of codes using	
	MATLAB	
	Solution for nonlinear system of equations: Newton's vector method	
2.	Eigen values and eigen vectors:	04
	Characteristic polynomials – eigen pair – power method, inverse power	
	method, shifted inverse power method – application to physical systems and	
	development of codes using MATLAB	
3.	Numerical differentiation:	04
	Approximation of derivatives (forward, backward, central) - error analysis -	
	numerical difference formulae	
4.	Numerical integration:	06
	Closed Newton-Cotes quadrature – composite and recursive rule – error	
	analysis – adaptive quadrature – Gaussian quadrature	
5.	Solution to ODE:	04
	Initial value problem using various approaches (Taylor, Picard, Euler, Heun,	
	4 th Runge-Kutta, Predictor-Corrector) – error analysis – system of differential	
	equations – higher order differentia l equations.	
	Boundary value problems – application to physical systems and development	
	of codes using MATLAB	
6.	Solution to PDE:	07
	Equation classification – solution using finite difference analogue – Jacobi &	
	Gauss-Siedel approach for elliptic PDE – explicit (Bender-Schmidt) & implicit	
	(Crank-Nicholson) approach for parabolic PDE – implicit & explocit approach	
	for hyperbolic PDE – application to physical systems and development of	
	codes using MATLAB	
7.	Introduction to computational tool :	15

Tatal	57
of basic level.	
node numbering, matrix sparsity etc. – hand computation of several problems	
several approaches for imposing boundary conditions – briefing on bandwidth,	
element stiffness matrix for bar and beam element – element assembly –	
geometric boundary condition - element characteristic matrix - derivation of	
Definition – DOF, nodes, element – direct stiffness method – natural and	

Books recommended:

- 1. Numerical methods using MATLAB, Mathews & Fink, PHI
- 2. Introductory methods of numerical analysis, Sastry, PHI
- 3. Concepts and applications of finite element analysis, Cook et al., John Wiley & Sons

<u>Aircraft Dynamics and Navigation (AE 3104)</u> (Only For AE)

Contact Period : 4L per week

Full Marks : 100 [Credit -

Sl No.	Article	No. of Classes
1	Introduction: Aircraft coordinate system, definition of angle of attack, sideslip angles	4
2	Newton's Second Law for Rigid Body Dynamics: Derivation of forces and moments for a rigid body, Inertia tensor of aircraft, Application of simplified 6dof equations for basic flight maneuvers	8
3	Position and Orientation: Frame of reference, Euler angles, Transformation matrices for body frame to earth fixed frame and vice versa	9
4	Aircraft equations of motion: Linearized Equations of Motion, Aerodynamic force and moment representation, Stability derivatives, Transformation of Stability Axes	13
5	Inertial and Gyroscopic Coupling: Historical background, Simplified 5 dof model for inertia coupling, roll divergence, gyroscopic effect of propeller, engines	6
6	Navigation: Introduction to Navigation – types of navigation and their historical emergence; Navigation tools – some useful navigation conventions and mathematics; Inertial Navigation – inertial frame concept, Einstein box experiment, navigation formulation, shape of earth, gravitation and gravity, WGS-84, ECI-frame and LPI-frame; Instrumenting Inertial Navigation – property of gyro and accelerometer, gimbaled inertial navigation mechanization; Strapdown Inertial Navigation – coordinate transformation schemes, rate equations involving Euler angles, direction cosines and quaternions, strapdown inertial navigation mechanization; Non inertial navigation frame - navigation in rotating earth frame, local vertical and geographic frames; Alignment – static self alignment principle involving gimbaled navigation and strapdown navigation; Satellite Based Navigation – principle of position determination, geometric range and pseudo range, GPS scheme description, concept of GDOP, error characteristics and comparison between SNS and INS	12
Tota	1	52

Books recommended:

- 1. W. F. Philips, Mechanics of Flight Willey India
- 2. Nelson, Flight Mechanics an Automatic control –Tata McGrawHils
- 3. Richard E., Coupling Dynamics in Aircraft: A Historical Perspective- DayDryden Flight Research CenterEdwards, California
- 4. Aerospace Navigation Systems Alexander V. Nebylov, Joseph Watson, Wiley

<u>Composite and Structures (AE 3105)</u> (Only for AE)

Contact Period : 3L per week Full Marks : 100 [Credit – 03] Pro requisite : Preliminary knowledge of strength of materials

Pre-requisite : Preliminary knowledge of strength of materials

S1	Article	No. of
No.		Classes
1	Introduction to composite materials: Definitions; constituent materials;	03
	terminologies; general characteristics; advantages and uses.	
2	Manufacturing processes of composite materials: Contact moulding methods;	03
	compression moulding methods and filament winding.	
3	Micromechanical analysis of composite strength and stiffness: Volume and	06
	weight fractions; longitudinal strength and stiffness; transverse modulus;	
	inplane shear modulus and Poisson's ratio.	
4	Elastic properties of unidirectional lamina: stress-strain relationship;	10
	engineering constants; transformation of stress and strain; transformation of	
	elastic constants; transformation of engineering constants.	
5	Analysis of laminated composites: strain-displacement relationship; stress-	11
	strain relations; equilibrium equations; laminate stiffness; determination of	
	lamina stresses and strains; types of laminate configurations.	
6	Failure theories and strength of a unidirectional lamina: Micromechanics of	06
	failure of unidirectional lamina; anisotropic strength and failure theories.	
	Total	39

Books recommended :

1. Madhujit Mukhopadhyay, Mechanics of Composite Materials and Structures, Universities Press, 2004.

2. R. M. Jones, Mechanics of Composite Materials, McGraw Hill, 1993.

3. T. H. G. Megson, Aircraft Structures for Engineering Students, Butterworth Heinemann, 4th Ed., 2007

Low Speed Aerodynamics Laboratory (AE 3171)

(Only for AE)

Contact Period: 0L-0T-3P per week

Full Marks: 50 [Credit – 02]

Sl. No.	Name of Experiments	No of
		classes
1	Introduction	03
2	Characteristics of a wind tunnel	03
3	Experiments to study separation process and	03
	associated stall characteristics with respect to	
	different airfoils	
4	Calibration of pitot tube with electronic differential	03
	pressure sensor and sample data acquisition	
5	Calibration of a cup anemometer with sample data	03
	acquisition	
6	Measurement of a fixed pitch propeller characteristics	03
	at hover	
7	Measurement of dynamic characteristics of a fixed	06
	pitch propeller	
8	Flow visualisation using water tunnel	03
9	Makeup classes	06
	Viva voce	03
	Total	39

Aircraft Stability and Control Laboratory (AE 3172) (Only for AE)

Contact Period: 0L-0T-3P per week

Full Marks: 50 [Credit – 02]

Prerequisite:

Sl	Name of experiments	No. of
No.		Classes
1	Introduction to MATLAB for Control System Engineering	02
2	SRV02:	03
	A. SRV02 Modeling:Deriving the dynamic equation and transfer function	
	for SRV02 servo plant using the first-principles	
	B. Frequency Response Experiment	
	C. Experiment with Step Input	
	D. Model Validation Experiment	
3	SRV02 Position Control Experiment	03
4	SRV02 Speed Control Experiment	03
5	Rotary Pendulum: Modeling and Experiment	03
	A. Experiment with Balance Control	

	B. Experiment with Swing-up Control	
6	Rotary Double Inverted Pendulum: Modeling, Simulation and Experiment	03
7	Rotary Flexible Link: Modeling, Simulation and Experiment	03
8	Experiment with Rotary Gyroscope	03
9	Experiment with Aero-2DOF Dual Rotor System: Simulation and	06
	Experiment with	
	A. PD Control	
	B. State Feedback Control with LQRand Kalman Filter	
10	Experiment with Half-Quadrotor: Simulation and Experiment with	06
	A. PD Control	
	B. State Feedback Control with LQRand Kalman Filter	
11	An Exposure to LABVIEW Software for Solving the above Experimentin	01
	Real-Time	
	End Test and Viva voce	03
	Total	39

Books recommended:

- 1. Ogata, K., Modern Control Engineering, 4th Ed. Prentice Hall India, 2006.
- 2. User Manuals of the various experimental setups

Numerical Methods and Computational Tools Laboratory (AE 3173) (Only for AE)

Contact Period: 0L-0T-3P per week

Full Marks: 50 [Credit – 02]

S 1	Name of experiments	No. of
No.		Classes
1	Coding practice using different programming languages, like C / C++ etc. on different numerical methods that includes (i) Solution for linear and non-linear systems of equation (ii) Eigen values and eigen vectors (iii) Numerical differentiation and integration (iv) Solution to ODE and PDE.	33
	Viva voce	06
	Total	39

6th SEMESTER SYLLABUS

B. TECH IN AEROSPACE ENGINEERING

High Speed Aerodynamics (AE 3201) (Only for AE)

Contact Period: 4L per week

Full Marks : 100 [Credit – 04]

Prerequisite: Elementary knowledge of low speed aerodynamics, Engineering thermodynamics

S 1	Article	No. of
No.		Classes
1	One Dimensional Flow:	04
	One Dimensional Flow revisited; Hugoniot Equations; One Dimensional	
	Flow with Heat Transfer; One Dimensional Flow with Friction. Problems.	
2	Two Dimensional Flow:	08
	Two Dimensional Flow revisited; Shock Polar; Shock Reflection and	
	Intersection; Bow Shock in front of a Blunt Body; Three Dimensional Shock	
	Waves; Prandtl-Meyer Expansion Waves; Shock-Expansion Theory.	
	Problems.	
3	Quasi-One Dimensional Flow: Quasi-One Dimensional Flow revisited;	06
	Nozzles; Diffusers. Problems.	
4	Unsteady Wave Motion:	10
	Introduction; Moving Normal Shock Waves; Reflected Shock Waves;	
	Elements of Acoustic Theory; Finite Waves; Incident and Reflected	
	Expansion Waves; Shock tube Relations; Finite Compression Waves.	
5	Linearised Flow:	10
	Introduction; Differential Conservation equations for Inviscid Flow; Crocco's	
	Theorem; Velocity Potential Equation: Linearised Velocity Potential	
	Equation; Linearised Subsonic Flow; Linearised Supersonic Flow; Method of	
	Characteristics.	
6	Three Dimensional Flow: Cones at Angle of Attack; Blunt Bodies at Angle	06
	of attack.	
7	Numerical Techniques: Steady and Unsteady Supersonic Flow	08
	Total	52

Books recommended :

- 1. J. D. Anderson Jr., Modern Compressible Flow with Historical Perspective, McGraw Hill
- 2. A H Shapiro, Dynamics and Thermodynamics of Compressible Fluid Flow-Volume I& II, Ronald Press
- 3. H W Liepmann and A Roshko, Elements of Gas Dynamics, John Wiley & Sons

Theory of Propulsion (AE 3202) (Only for AE)

Contact Period: 4L per week

Full Marks: 100 [Credit – 04]

Prerequisite: Knowledge of all subjects of previous semesters		
Sl	Article	No. of
No.		Classes
1.	Component Performance:	08
	Introduction; Variation of Gas Properties; Component Performance; Inlet and	
	Diffuser Pressure Recovery; Compressor and Turbine Efficiencies; Burner	
	Efficiency and Pressure Loss; Exit Nozzle Loss.	
2.	Parametric Cycle Analysis of Real Engines:	12
	Introduction; Turbojet; Turbojet with Afterburner; Turbofan - Separate	
	Exhaust System; Turbofan with Afterburning - Separate Exhaust System;	
	Turbofan with Afterburning - Mixed Exhaust Stream; Turboprop Engine;	
	Variable Gas Properties.	
3.	Engine Performance Analysis:	12
	Introduction; Gas Generator; Turbojet Engine; Turbojet with Afterburning;	
	Turbofan Engine - Separate Exhausts and Convergent Nozzles; Turbofan with	
	Afterburning – Mixed-Flow Exhaust Steam; Turboprop Engine; Variable Gas	
	Properties.	
4.	Turbomachinery:	10
	Introduction; Euler's Turbomachinery Equations; Axial Flow Compressor	
	Analysis; Centrifugal-Flow Compressor Analysis; Axial Flow Turbine	
	Analysis; Centrifugal-Flow Turbine Analysis.	
5.	Inlets, Nozzles and Combustion systems:	10
	Introduction to Inlets and Nozzles; Inlets; Subsonic and Supersonic Inlets;	
	Exhaust Nozzles; Introduction to Combustion systems; Main and after Burners.	
	Total	52

Books:

1. J. D. Mattingley, Elements of Gas Turbine Propulsion, Tata McGraw Hill

Aerospace Structures (AE 3203) (Only for AE)

Contact Period: 4L per week Prerequisite: Advanced Strength of Materials

Full Marks: 100 [Credit – 04]

S1	Article	No. of
No.		Classes
1.	Flight Vehicle Structures and Materials:	
	Structural components of aircraft and their functions – structural idealization –	10
	aircraft materials - strength-weight comparisons of materials - theories of	12
	failures – Airy stress function and its applications	
2.	Airframe Loads:	
	Airworthiness requirements - load factors - limit loads - ultimate loads -	
	reserve factor and margin of safety – basic flight loading conditions – V-n	14
	diagram – fail-safe and safe-life approach – aircraft fatigue life – inertia loads	17
	analysis – analysis of manoeuvre loads (including acceleration) – analysis of	
	gust loads	
3	Analysis of Open & Closed Section Beam:	
	Unsymmetrical bending – bending approximation for thin walled section –	18
	stress-strain-displacement relation for open & closed thin walled beam – shear	
	flow, shear center & applications – shear of open section beam – shear of closed	
	section beam – torsion of closed section beam – torsion of open section beam	
	using membrane analogy – analysis of combined open & closed section –	
	deflection of open & closed section beams	
4.	Stress Analysis of Aircraft Components:	
	Fuselage and wing ribs – cut-outs in semi-monocoque structures – joints and	8
	fittings	
	Total	52

Books recommended:

- 1. Aircraft Structures for Engineering Students T.H.G. Megson
- 2. Aircraft Structures David J. Peery
- 3. Analysis and Design of Flight Structures E.F. Bruhn
- 4. Airframe Stress Analysis and Sizing Michael C. Y. Niu
- 5. The Aeroplane Structure A. C. Kermode
- 6. Elasticity in Engineering E.E. Sechler

Introduction to FEM and Applications (AE 3204) (Only for AE)

Contact Period : 4L per week

Full Marks : 100 [Credit – 04]

Prerequisites : Advanced Strength of Materials, Numerical Method and Computational Tools

Sl.	Article	No. of
		classes
1	Variational (Rayleigh-Ritz) approach – Pascal's triangle – strong and weak	16
	form of formulation – natural coordinates and shape functions for different	
	cases – isoparametric, subparametric and superparametric element – bar,	
	quadratic plane, hexahedral element, plane stress element – patch test	
2	Coordinate transformation – stress, strain, material properties, stiffness	08
	matrices	
3	Basic aspects of plate bending – governing differential equations – various	14
	boundary conditions – various classical solutions – application of FEM in	
	Kirchhoff and Mindlin theory	
4	Weighted residual (Collocation, Least Square, Sub-domain collocation,	10
	Galerkin) approach – derivation of basic equation using classical & FE form –	
	example solution	
5	Comparison of FEM with other computational methods	04
	Total	5 2

Books recommended:

- 1. Numerical methods using MATLAB, Mathews & Fink, PHI
- 2. Introductory methods of numerical analysis, Sastry, PHI
- 3. Concepts and applications of finite element analysis, Cook et al., John Wiley & Sons

Orbital Mechanics (AE 3205) (Only for AE)

Contact Period: 4L per week Prerequisite: Physics, Dynamics and Mathematics

Full Marks : 100 [Credit – 04]

S1.	Article	No. of
		classes
1.	Two Body Problem:	12
	Introduction; Equation of Motion in an Inertial frame; Equations of Relative	
	Motion; The Orbit Formulas; Energy Law; Different Orbits and Trajectories,	
	Perifocal Frame; The Lagrange Co-efficient.	
2.	Orbital Position as a Function of Time:	07
	Introduction; Time since Periapsis; Applications to different Orbits and	
	Trajectories.	
3.	Orbits in Three Dimensions:	09
	Introduction; Geocentric Frames; Orbital Elements and State Vectors,	
	Coordinate Transformation; Application between Geocentric Frames, Effect of	
	Earth's Oblateness; Ground Tracks.	
4.	Preliminary Orbit Determination:	10
	Introduction; Gibbs Method for Orbit Determination; Lambert's Problem;	
	Sidereal Time; Different Topocentric Coordinate Systems; Orbit	
	Determination.	
5.	Orbital Maneuvers:	14
	Introduction; Impulsive Maneuvers; Hohmann Transfer; Phasing Maneuvers;	
	Hohmann Transfers; Apse Line Rotation; Chase Maneuvers; Phase Change	
	Maneuvers; Nonimpulsive Orbital Maneuvers.	
	Total	52

Books:

1. H. D. Curtis, Orbital Mechanics for Engineering Students, B. H., Elsevier

High Speed Aerodynamics Laboratory (AE 3271) (Only for AE)

Contact Period: 0L-0T-3P

Full Marks : 50 [Credit – 02]

S1	Name of experiments	No. of
No.		Classes
1	Nozzle Choking Testing, Nozzle Pressure Distribution and Nozzle	33
	Performance Testing	
	Vive Veee	06
		00
	Total	39

PROPULSION LABORATORY (AE 3272)

Contact Period: 0L-0T-3P

Full Marks: 50 [Credit – 02]

	Name of Experiments:	No. of
	-	Classes
1	Performance studies of lab-scale subsonic ramjet engine, Propeller blade theory	33
	and measurement of propeller lift force, Performance studies of a duct burner,	
	Laminar flame speed studies in a hollow cylindrical pipe, Flame	
	characterization studies: Diffusion to premixed flame using flame stabilization	
	set-up, Torque measurement studies over a reaction turbine,	
	Viva Voce	06
	Total	39
i i		

Aircraft Design and Flight Training (AE 3273) (Only for AE)

Contact Period: 0L-0T-3S per week

Full Marks: 50 [Credit – 02]

S1	Name of experiments	No. of
No.		Classes
1.	Introduction	02
2.	Different Phases of Design	02
3.	Starting with an Example – a very rudimentary design	10
4.	Selection of an Airfoil	05
5.	Flight Training (Two weeks long course at IIT Kanpur)	20
	Viva voce	
	Total	39

7th SEMESTER SYLLABUS

B. TECH IN AEROSPACE ENGINEERING

<u>Computational Fluid Dynamics (AE 4101)</u> (Only for AE)

Contact Period : 4L per week

Full Marks : 100 [Credit – 04]

Pre-requisite : Aerodynamics, Numerical Mathematics

Course objective: This course is intended to give students an exposure to different methods to solve various differential equations used to describe fluid flow phenomenon.

Sl	Article	No. of
No.		Classes
1	Introduction	02
2	Basics of Discretisation Methods: Difference Representations; Errors;	04
	Consistency; Stability; Convergence	
3	Applications of Numerical Methods to Selected Model Equations: Wave	10
	Equation; Heat Equation; Laplace's Equation; Burger's Equations	
4	Governing Equations of Fluid Mechanics: Fundamental equations;	10
	Averaged Equations of Turbulent Flows; Boundary layer Equations;	
	Introduction to Turbulence Modelling; Euler Equations; Transformation of	
	Governing Equations	
5	Finite-Volume Formulation: Two-Dimensional Finite Volume Methods;	10
	Three-Dimensional Finite Volume Methods	
6	Numerical Method Applications: Euler Equations; Boundary layer	10
	Equations; Parabolised Navier Stokes equations; Navier-Stokes equations;	
	Grid Generations	
7	Compressible flow- Density based solver	06
	Total	52

Contribution of course to meeting the Professional component: The students can use this knowledge and training not only in their further academic pursuance but also in different industrial applications.

Books recommended :

- 1. Computational Fluid Mechanics and Heat Transfer: J. C. Tennehill, D. A. Anderson, R. H. Pletcher; Taylor and Francis
- 2. Introduction to Computational Fluid Dynamics: Pradip Niyogi, S. K. Chakrabartty, M. K. Laha; Pearson Education
- 3. Computational Fluid Dynamics The Basics with Applications: J. D. Anderson Jr.; McGrawHill

<u>Jet and Rocket Propulsion (AE 4102)</u> (Only for AE)

Contact Period: 4L per week

Full Marks : 100 [Credit – 03]

Prerequisite: Thermodynamics, Fundamentals of Fluid Mechanics, Compressible flow, Theory of propulsion

Sl	Article	No. of
No.		Classes
1.	Introduction: Brief history of rocketry, classification of rocket propulsion	4
	systems	
2.	Ideal Rocket Nozzle Performance: Review of 1-D compressible flow,	8
	rocket	
	performance fundamentals, nozzle design, deviations from ideal performance.	
3.	Theory of Rocket Propulsion: Rocket principle and rocket equation,	12
	desirable parameters of a rocket, propulsive efficiency of rocket, multistage	
	and clustering of rockets.	
4.	Chemical Propellants: Combustion and Thermochemistry	6
5.	Solid Rocket Motors: Mechanism of burning, evaluation of burn rate,	8
	propellant grain configuration	
6.	Liquid Rocket Engines: General description, engine cycles, propellant feed	8
	system, component design fundamentals, progress of combustion in	
	combustion chamber and nozzle, liquid droplet vapourization, mixing and	
	chemical reaction	
7.	Electric Propulsion: Classification of electric propulsion systems,	6
	performance analysis	
	Total	52

Books recommended:

- 1. Rocket Propulsion by G. W. Sutton
- 2. Missile Aerodynamics by J. Nielsen
- 3. Mechanics and Thermodynamics of Propulsion, P. Hill and C. Peterson, Addison-Wesley Publishing Company.
- 4. Rocket and Spacecraft Propulsion, M. J. L. Turner, Springer Praxis Publishing.
- 5. Propulsion Techniques, P. J. Turchi, Ed., AIAA Book Series.
- 6. Introduction to Rocket Science and Engineering, Travis S. Taylor, CRC Press (Taylor and Francis Group).
- 7. Rocket Propulsion, Ramamurthy

<u>Aerospace Structures Laboratory (AE 4171)</u> (Only for AE)

Contact Period : 0L-0T-3P per week

Full Marks : 50 [Credit – 02]

S 1	Name of experiments	No. of
No.		Classes
1.	Introduction of Analog to Digital Converter (HDA200)	03
2.	Deflection of Frames – i) S – Frame, ii) Rectangular Portal Frame	06
3.	Buckling of Thin Struts	06
4.	Shear Centre of Different Thin walled Sections	09
5.	Reporting on experiments and necessary corrections	03
6	Bending Stresses in Beams	03
7.	Plastic Bending of Beams	03
8.	Two dimensional Bending	03
9.	Viva voce	03
	Total	39
		1

Aircraft Design and Manufacturing Techniques (AE 4172)

(Only for AE)

Contact Period: 0L-0T-4S per week

Full Marks: 50 [Credit – 02]

Sl. No.	Article	No. of Classes
1	Design of wing: Numerical modelling of a wing using Lifting line theory. Design of a flying wing	6
2	Tail design: Tail sizing from static and dynamic stability, spin recovery	6
3	High lift devices: Working principle of highlight devices, Types of Leading and trailing edge HLD, Aerodynamic characteristics. Selection of HLD	6
4	Drag estimation: Estimation of skinfriction drag, Estimation of drag of complete aircraft using CBBM method	6
5	Propeller propulsion: Propeller design usingBlade element theory (MATLAB implementation), Propeller selection from experimental data	6

6	Design of landing gear: Types, Stability analysis of various configurations of landing gear, Geometric designing of landing gear for any particular aircraft, Retraction of landing gear, mechanisms	6
7	Computer Aided Manufacturing (CAM) : CNC Technology and Programming, DNC, Adaptive Control	4
8	Non-traditional Machining: Principle and various processes- EDM, Wire EDM, ECM, AJM, LJM, Plazma Machining, Abrasive Water jet machining	4
9	Industrial Automation: Concept of CIM and FMS, Automated Material Handling, Assembly and Inspection, Computer Aided Process Planning, Group Technology and Cellular Manufacturing	4
	Additive Manufacturing: 3D printing and 3D Scanner, Intelligent	
10	Manufacturing	4
		52

Books:

- 1. General Aviation Aircraft Design Applied Methods and Procedures Snorr Gumundsson
- 2. The Design of the Aeroplane Darrol Stinton
- 3. Aircraft Design: A Conceptual Approach D. P Raymer
- 4. Airplane Design Dr. J. Roskam
- 5. M. P. Groover Fundamentals of Modern Manufacturing, Materials, Processes and Systems
- 6. P. C. Pandey and H. S. Shah Modern Machining Processes
- 7. V. K. Jain Advanced Machining Processes
- 8. M. P. Groover Automation, Production Systems and Computer Integrated Manufacturing

Core Elective I (For 7th Semester)

Aerospace Structural Dynamics (AE 4121) (Only for AE)

Contact Period : 3L per week

Full Marks : 100 [Credit – 03]

Prerequisite : Theory of Vibration, Aerospace Structures

S 1	Article	No. of
No.		Classes
1	Introduction and brief reviews of Aerospace Structures and Mechanical	4
	Vibration	
2	Introduction to Calculus of Variation	4
	Introduction, Functional, The First Variation, Euler-Lagrange Equation,	
	Boundary Conditions	
3	Hamilton's Principle and Lagrange's Equation	4

4.	Development of a typical Aircraft Vibration Problem	2
5.	Beam Torsional Dynamics	7
	Equation of Motion, General Solution, Boundary Conditions, Solution for mode	
	shapes and frequencies.	
	Beam Bending Dynamics	6
	Equation of Motion, Boundary Conditions, Solution for mode shapes and	
	frequencies.	
6.	Approximate Solution Techniques in Structural Dynamics:	8
	Rayleigh-Ritz Method, Galerkin's Method, Finite Element Method	
7.	String Dynamics:	4
	Equation of Motion-Standing Wave Solution, Orthogonality of mode Shapes	
	and its implication, Travelling wave solution.	
	Total	39

Books recommended :

- 1. Introduction to Structural Dynamics and Aeroelasticity D. H. Hodges and G. A. Pierce, Cambridge University Press
- 2. Elements of Vibration Analysis L. Meirovitch, McGraw-Hill
- 3. Energy and Finite Element Methods in Structural Mechanics I.H. Shames and C.L. Dym, CRC Press
- 4. Aeroelasticity R.L. Bisplinghoff, H.Ashley and R.L.Halfman, Dover

Satellite Attitude Dynamics (AE 4122) (Only for AE)

Contact Period : 3L per week

Full Marks : 100 [Credit - 03]

Sl	Article	No. of
No.		Classes
1	Introduction; Kinematics, Equations; Moments of inertia; Euler Angles; Yaw,	14
	Pitch and Roll angles; Quaternions	
2	Torque – free motion; Stability of Torque-free Motion; Dualspin Spacecraft;	25
	Nutation Damper; Conning Maneuver; Attitude Control Thrusters; Yo-yo	
	Despin mechanism; Gyroscopic Attitude Control; Gravity Gradient	
	Stabilisation	
	Total	39

Book recommended:

1. Orbital Mechanics for Engineering Students H. D. Curtis

8th SEMESTER SYLLABUS B. TECH IN AEROSPACE ENGINEERING

Turbulent Flow (AE 4201) (Only for AE)

Contact Period : 4L per week

Full Marks : 100 [Credit – 03]

Prerequisite: Knowledge of Partial differential equations, matrix algebra and elementary tensor algebra, fluid mechanics, viscous fluid flow

Sl	Article	No. of
No.		Classes
1.	General introduction and concepts: Factors affecting the transition to turbulent	06
	flow, classical experiments on the transition to turbulence, energy cascade, role of	
	averaging in turbulent flow, averaging procedures, characteristics of turbulent flow,	
	types of turbulent flow, Kolmogorov microscales of turbulence, other characteristic	
	scales and orders of magnitude	
2.	Fundamental equations for turbulent flow: Continuity equation for turbulent	14
	flow, Reynolds equation of motion, Reynolds stress and correlations, Correlation	
	function, Statistical theory of turbulence, Fourier transform and spectra, Reynolds	
	stress equation, Energy equation in a turbulent flow, Equation for dissipation of	
	energy, Transfer of energy between mean flow and turbulence, Transfer of energy	
	from mean flow to turbulence, Role of pressure.	
3.	Vorticity dynamics: Vortex terms in the equation of motion, Reynolds stress and	
	vortex stretching, The vorticity equation, Vortex line, Vortex tube, Vorticity in	08
	turbulent flows, The Enstrophy equation, The dynamics of $\overline{\omega_{,\omega_{i}}}$. The equation for	
	$\omega_i'\omega_i'$. Vorticity budget. Length scales.	
4.	Wall bounded turbulent flows: Duct flow, balance of mean forces, near wall shear	
	stress, mean velocity profile, turbulent kinetic energy budget, length scales and	08
	mixing length; Turbulent flow in duct; Turbulent flow over flat plate; Turbulent	
	boundary layers, mean momentum equation, mean velocity profile, Reynolds stress	
	balances	
5.	Turbulence modelling: Phenomenological theories of turbulence, Boussinesq's	
	theory, Prandtl's mixing length hypothesis, One equation models, Spalart Allmaras	10
	model, $k - \varepsilon$ model, $k - \omega$ model, Introduction to LES	
6.	Free shear turbulent flows: Description of flow in a turbulent jet, self	06
	preservation, analysis of 2-D jet, Integral momentum equation, integral energy	
	equation, entrainment hypothesis, scale relations.	
	Total	52

Books recommended:

1. Turbulence – P.A. Davidson, Oxford University Press

2. Turbulent flows – Stephen B. Pope, Cambridge University Press

3. A first course in turbulence - H. Tennekes and J. L. Lumley, M.I. T press

Core Elective II: (For 8th Semester)

Spacecraft Dynamics (AE 4221) (Only for AE)

Contact Period: 3L per week Full Marks: 100 [Credit – 03] Prerequisite: Aircraft Dynamics, Aerospace Vehicle Dynamics and Navigation

Sl	Article	No. of
No.		Classes
1	Satelite Attitude Dynamics:	03
	Introduction Torque Free Motion; Stability of Torque Free Motion; Dual Spin	
	Spacecraft; Nutation Damper; Coning Maneuver; Attitude Control Thrusters;	
	Yo-yo Spin Mechanisms; Gyroscopic attitude Control; Gravity Gradient	
	Stabilisation.	
2	Rocket Vehicle dynamics:	04
	Introduction; Equations of Motion; The Thrust Equation; Rocket Performance;	
	Restricted Staging in Field Free Space; Optimal Staging.	
3	Orbital Maneuvers: Introduction; Impulsive Maneuvers; Hohmann	08
	Transfer;Bi-elliptic Hohmann Transfer; Phasing Maneuvers; Non-Hohmann	
	Transfers with Common Apse Line; Apse Line Rotation; Chase Maneuvers;	
	Phase Change Maneuvers; Nonimpulsive Orbital Maneuvers.	
4	Relative Motion and Rendezvous: Introduction; Relative Motion in Orbit;	08
	Linearisation of the Equations of Relative Motion in Orbit; Clohssy-Wiltshire	
	Equations; Two-impulse Rendezvous maneuvers; Relative Motion in Close-	
	proximity Circular Orbits.	
5	Interplanetary Trajectories: Introduction; Interplanetary Hohmann Transfers;	08
	Rendezvous Opportunities; Sphere of Influence; Method of Patched Conics;	
	Planetary Departure; Sensitivity Analysis; Planetary Rendezvous; Planetary	
	Flyby; Planetary Ephimeris; Non-Hohmann Interplanetary Trajectories.	
6	Introduction to Orbital Perturbations: Introduction; Cowell's Method;	08
	Encke's Method; Atmospheric Drag; Gravitational Perturbations; Variation of	
	Parameters; Gauss Variational Equations; Method of Averaging; Solar	
	Radiation Pressure; Lunar Gravity; Solar Garvity.	
	Total	39

Books recommended:

Orbital Mechanics for Engineering Students by H. D. Curtis

Fracture Mechanics (AE 4222) (Only for AE)

Contact Period: 3L per week

Full Marks: 100 [Credit – 03]

Prerequisite: Mechanics of Solids, Numerical Methods, Finite Element Methods

Article	No. of
	Classes
Overview and Application of Fracture Mechanics Approach to Engineering	06
Design, Effect of Material Properties on Fracture and Failure, Contributions	
of Inglis, Griffith and Irwin, Classification of LEFM and EPFM, Modes of	
Loading: Mode-I, Mode-II and Mode-III, Fracture Mechanisms: Brittle	
Fracture, Ductile Fracture, Fracture Mechanism in Metals and Non Metals,	
Void Nucleation and Growth, Ductile Brittle Transition.	
Linear Elastic Fracture Mechanics (LEFM), Griffith Theory of Energy	12
Balance, Energy Release Rate (G), Instability and R Curve, Stress Intensity	
Factor, (SIF) K, Relationship Between K and G, Crack-tip Stress and	
Displacement Field Equations, Westergaard Solution of Stress Field for	
Mode-I, Mode II, Mode III, SIF for Modeling of Plastic Deformation, Irwin's	
Model.	
Elastic Plastic Fracture Mechanics (EPFM), Crack Tip Opening Displacement	10
(CTOD), J Contour Integral, Relationship Between J and CTOD, J Controlled	
Fracture, Crack Growth Resistance Curves, HRR Field, Dynamic Fracture.	
Fail-safe and Safe-life approach in Aircraft Design, Crack Initiation and	04
Fatigue Crack Growth, Paris Law, Crack Closure.	
Fracture Toughness Testing on Metals.	02
Fracture Mechanics using Finite Element Analysis.	05
Total	39
	Article Overview and Application of Fracture Mechanics Approach to Engineering Design, Effect of Material Properties on Fracture and Failure, Contributions of Inglis, Griffith and Irwin, Classification of LEFM and EPFM, Modes of Loading: Mode-I, Mode-II and Mode-III, Fracture Mechanisms: Brittle Fracture, Ductile Fracture, Fracture Mechanism in Metals and Non Metals, Void Nucleation and Growth, Ductile Brittle Transition. Linear Elastic Fracture Mechanics (LEFM), Griffith Theory of Energy Balance, Energy Release Rate (G), Instability and R Curve, Stress Intensity Factor, (SIF) K, Relationship Between K and G, Crack-tip Stress and Displacement Field Equations, Westergaard Solution of Stress Field for Mode-I, Mode II, Mode III, SIF for Modeling of Plastic Deformation, Irwin's Model. Elastic Plastic Fracture Mechanics (EPFM), Crack Tip Opening Displacement (CTOD), J Contour Integral, Relationship Between J and CTOD, J Controlled Fracture, Crack Growth Resistance Curves, HRR Field, Dynamic Fracture. Fail-safe and Safe-life approach in Aircraft Design, Crack Initiation and Fatigue Crack Growth, Paris Law, Crack Closure. Fracture Toughness Testing on Metals. Fracture Mechanics using Finite Element Analysis. Total

Books recommended:

- 1. T.L. Anderson, Fracture Mechanics Fundamentals and Applications, 3rd Edition, Taylor and Francis Group, 2005.
- 2. D. Broek, Elementary Engineering Fracture Mechanics, Kluwer Academic Publishers, Dordrecht, 4th revised Edition, 1982.
- 3. C.T. Sun, Z. –H. Jin, Fracture Mechanics, Academic Press, 2nd Edition, 2006.

4. Prashant Kumar, Elements of Fracture Mechanics, Tata McGraw Hill, New Delhi, India, 2009.

Aeroelasticity (AE 4223) (Only for AE)

Contact Period: 3L per week

Full Marks : 100 [Credit – 03]

Prerequisite : Dynamics and vibration Mechanics of solids, Aerospace structures, Basic Aerodynamics.

	method, Testing and models Total	39
5.	Flutter calculation; U-g method; P-k method; Exact treatment of bending- Torsion Flutter of Uniform Wing; Flutter Analysis by Assumed Mode	9
4.	Dynamic Aero elasticity; Dynamic/Flutter model of 2D airfoil, Typical section vibration and dynamics; Mode shapes ,Modal coordinates, Rayleigh-Ritz models, Structural damping,	9
3.	Static Aero elasticity; Static stability of typical section; Divergence of 2D airfoil and Straight Wing; Aileron Reversal; Aero compressibility effects; multi-degree-of-freedom models, Control Effectiveness; Wing Loading and Deformations; MDOF systems with static feedback control; Differential equation modes; Swept wing static aeroelasticity-flexural axis concepts; Aeroelastic tailoring	12
2.	Classification and Solution of Aero elastic problems; Aero-structure interaction	2
1.	Introduction Overview and objectives; Aero elastic Problems; Deformation of Structures and Influence Coefficients; Energy Method	7
SI No.	Article	No. of Classes

Books recommended:

- 1. E.H. Dowell et.al., "A Modern Course in Aero elasticity", Sijthoff & Noordhoff, 1980.
- 2. R.L. Bisplinghoff, H. Ashley and R.L. Halfman, "Aero elasticity", Addison-Wesley, 1955.
- 3. D.H. Hodges and G.A. Pierce, "Introduction to Structural Dynamics and Aeroelasticity" Cambridge Aerospace Series, 2002.
- 4. R.L. Bisplinghoff and H. Ashley, "Principles of Aeroelasticity", Dover, 1962.
- 5. R.H. Scanlan and R. Rosenbaum, "Introduction to the study of Aircraft Vibration and Flutter" Macmillan, 1951.
- 6. Y.C. Fung, "An Introduction to the Theory of Aeroelasticity", John Wiley & sons, 1955.
- 7. AGARD Manual on Aeroelasticity, Vol. I-VI, Since 1959 with continual updating.
- 8. H. Ashley, "Aeroelasticity", Applied Mechanics Reviews, Feb. 1970.
- 9. Blevins, R.D., Flow induced Vibrations, Von Nostrand Rheinhold co. 1977.

Learning Outcomes:

To develop the ability to analyze fundamental aeroelastic phenomena. To introduce design concepts used to integrate structural topology with materials to develop light-weight structures.

Fundamentals of Combustion in Propulsion (AE 4224) (Only for AE)

Contact Period: 3L per week

Full Marks: 100 [Credit – 03]

Prerequisite: Engineering Thermodynamics, Theory of Propulsion, Jet and Rocket Propulsion

Sl.	Article	No. of
		Lectures
1	Introduction: Introduction to combustion, Application of combustion, Fuel	3
	and oxidizer properties, Classification fuel and oxidizers used in propulsion,	
	Various combustion modes, Scope of combustion in propulsion.	
2	Chemistry of Combustion: Fundamentals of combustion kinetics, Elementary	4
	reactions, Chain reactions, Multistep reactions, simplification of reaction	
	mechanism, Global kinetics.	
3	Laminar Premixed flame: Physical description, Rankine-Hugonoit relations,	14
	Flame propagation and flame speed, Determination of flame speed, Factors	
	effecting flame speed, Flame quenching and ignition, Limit phenomena -	
	flammability limits, ignition, and flame stabilization.	
	Laminar Non-premixed flames: Physical description, analysis of diffusion	
	controlled systems, Shvab-Zeldovich Formulation, Analysis of typical laminar	
	non-premixed flames, Partially premixed flames, Effect of jet velocity on jet	
	flames.	
	Other topics: Droplet and spray combustion.	
4	Metal Combustion: Importance of metal combustion in propulsion,	6
	physical description of metal combustion, Combustion mechanisms of	
	Aluminum and Boron in various flow conditions.	
5	Role of Combustion in Propulsion: Basics of composite solid propellant	12
	deflagration, Principal ideas of combustion in liquid propellant rockets,	
	Combustion in boundary layers and hybrid rockets, Combustion process in	
	combustor of gas turbine engines and types of flame holders.	
	Total	39

Recommended books:

- 1. An introduction to combustion by Stephen R. Turns, McGraw Hill Publications
- 2. Fuels and Combustion by Samir Sarkar, University Press
- 3. Combustion by Irwin Glassman, Aacademic Press.
- 4. Fundamental of Combustion by D.P. Mishra, PHI learning private limited.

<u>Aircraft Dynamics - A Modeling Approach</u> (AE 4225) (Only for AE)

Contact Period: 3L per week

Full Marks: 100 [Credit – 03]

S1	Article	No. of
No.		Classes
1	Review of Basic Concepts of Aerodynamic Modeling	07
2	Modeling of Longitudinal Aerodynamic Forces and Moments	08
3	Modeling of Lateral Directional Aerodynamic Forces and Moments	08
4	Review of Basic Aircraft Performance and Modelinng of Thrust Forces and Moments	08
5	Aircraft Stability and Design for Trim condition	08
	Total	39
<u> </u>		1

Book recommended: :

Aircraft Dynamics from Modeling to Simulation M. R. Napolitano

<u>Computational Low Speed Aerodynamics (AE 4226)</u> (Only for AE)

Contact Period: 3L per week

Full Marks : 100 [Credit – 03]

Sl	Article	No. of
No.		Classes
1	Introduction:	9
	Basic Solution: Point source; Point Doublet; Polynomials	
	Two-Dimensional Version of Basic solutions	
	Surface Distribution of Basic solutions	
2	Singularity Elements and Influence Coefficients	10
	Two-Dimensional Point Singularity Elements; Two-Dimensional Constant	
	Strength Singularity Elements; Two-Dimensional Linear Strength Singularity	
	Elements	
	Constant Strength Vortex Line Segment; Vortex Ring; Horseshoe Vortex	
3	Two-Dimensional Numerical Solutions	10
	Point Singularity Solutions; Constant-Strength Singularity Solutions; Linearly	
	Varying Singularity Strength Methods;	
4	Three-Dimensional Numerical Solutions	10
	Lifting-Line Solution by Horseshoe Elements; Lifting-Surface Solution by	
	Vortex Ring Elements	
	Total	39

Book recommended:

1. Low Speed Aerodynamics J. Katz and A. Plotkin

Mechatronics and Avionics (AE 4227)

Contact Periods – 3L Prerequisite: None

Full Marks: 100 [Credit-03]

S 1	Article	No. of
No	Aiticle	Classes
1	Overwiew of Machetronics, What is Machetronics? Instrumentation and	05
1	Control System Concent of machanism (link joints DOEs 4 her grank	03
	control System. Concept of mechanism (link, joints, DOFs, 4 bar, crank-	
	(gear, belt)	
2	Sensor and Actuators: Introduction - Physical Principles, static and	05
	dynamics performance characteristics, Different type of Sensors, Actuators:	
	Electrical, Hydraulic and Pneumatic Actuation Systems, Concept of Smart	
	Material	
3	Mathematical Modeling of Physical Systems: Physical & Mathematical	05
	Modeling of Mechanical, Electrical, and Electromechanical, Thermal, Fluid	
	(Hydraulic & Pneumatic) and Multidisciplinary Physical Systems, Dynamic	
	System Analytical.	
4	Electronics and hardware components for Mechatronics: Computer	03
	interfacing, hardware for digital/analog interfacing	
5	Introduction to Control System: Role of Controls in Mechatronics, Analog	04
	vs Digital, open loop vs feedback control, continuous vs discrete time	
	control. Signals and Systems. Transfer Functions and Laplace transforms.	
	Motion control – PID controllers	
6	Introduction to embedded systems: System design, Microprocessors,	03
	Microcontrollers, DSP	
7	Human Computer Interaction, Virtual Instruments, Man Machine	02
	interface, Virtual Reality	
8	Avionics - Sensing components of an airplane and their functions - motions	12
	of a plane - Inertial Navigation - Sensors - Gyroscope- Principles, Gyro	
	equations, Rate Gyros - Rate integration and free Gyro, Vertical and	
	Directional Gyros, Laser Gyroscopes, Accelerometers. Direct reading	
	compass, Measurement and control of Pressure, temperature, fuel quantity,	
	spped, torque, engine vibration and power, Satellite navigation - GPS -	
	system description -basic principles -position and velocity determination. IR	
	sensor, Accelerometer sensor, Magnetic sensor, Load Cell, LVDT.	
	Total	39

Books recommended:

- 1. Mechatronics by Robert H. Bishop
- 2. Mechatronics D Silva
- 3. Collinson R.P.G. 'Introduction to Avionics', Chapman and Hall, 2002
- 4. Pallet, E.H.J. 'Aircraft Instruments & Integrated systems', McGraw-Hill, 2002
- 5. Myron Kyton, Walfred Fried, 'Avionics Navigation Systems', John Wiley& Sons,2000
- 6. Pallett, E.H.J. 'Aircraft instruments, principles and applications', Pitman publishing Ltd., London, 1995

Open Elective II (For 8th Semester)

Finite Element Method (AE 4261)

Contact Period: 3L per week

Full Marks : 100 [Credit - 03]

Prerequisite: Fundamentals of Mechanics, Calculus, Matrix Algebra, Elementary numerical methods, Adequate familiarity with computer

Course objectives

Learning versatile and widely used numerical methods to approximately solve practical problems.

S 1	Article	No. of
No.		Classes
1	Overview of Finite Element Method (FEM): Basic concept; Historical	03
	background; Engineering applications; Introduction to Displacement, Force	
	and Mixed Formulations.	
2	Basic procedure : Discretization - Basic element shapes, Node numbering	08
	scheme; Interpolation model - Order of polynomial, Generalized and Natural	
	co-ordinates, Convergence requirement, Patch test; Illustrations.	
3	Derivation of Characteristic Matrices : Introduction to Direct approach,	10
	Variational approach (Raleigh-Ritz) and Weighted Residual Approach	
	(Collocation, Least Square, Galerkin); Derivation of Finite Element equations	
	using Variational and Weighted Residual Approach; Introduction to Strong and	
	Weak Form formulation; Illustrations.	
4	Assembly and Derivation of System Equations : Co-ordinate Transformation;	06
	Assemblage; Substitution of Boundary Conditions.	
5	Numerical Solution of FEM Equations : Introduction to Band solver and	09
	Skyline technique; Applications to Equilibrium and Eigen value problems	
6	Concluding Remarks: Comparison with other established numerical methods;	03
	Introduction to popular FEM packages.	
	Total	39

Books recommended:

- "The Finite Element Method" by S. S. Rao
- "An Introduction to The Finite Element Method" by J. N. Reddy
- "Fundamentals of Finite Element Analysis" by D. V. Hutton

Nonlinear Dynamics (AE 4262)

Contact Period: 3L per week Prerequisite : Knowledge of Dynamical Systems

Full Marks : 100 [Credit – 03]

Sl.	Article	No. of
		classes
1.	Introduction.	02
2.	One-Dimensional Flows, Fixed Points, Stability, Bifurcations - Ideal and	06
	Imperfect.	
3.	Tow-Dimensional Flows, Phase Plane, Fixed points, Stability, Limit Cycles,	11
	Bifurcations Revisited, Index Theory.	
4.	Analytical Methods, Averaging techniques, Perturbative Methods, Duffing and	10
	van der Pol Oscillators.	
5.	One- Dimensional Maps, Bernoulli Shift, Logistic Map, Lyapunov Exponent.	05
6.	Strange Attractors, Chaos and Fractals.	05
Total		39

Books recommended:

- 1. Nonlinear Dynamics and Chaos S. H. Strogatz
- 2. Chaos and Nonlinear Dynamics R. C. Hilborn
- 3. An Exploration of Chaos J. Argyris

Basics of Parallel Computation (AE 4263)

Contact Period: 3L per week

Full Marks : 100 [Credit – 03]

Prerequisite: Basic programming knowledge in any one of FORTRAN, C, and C++

Sl No.	Module name and Topics	No. of Classes
1.	Introduction to parallel computation: Needs for parallel computations. Challenges of parallel programming- Parallel Programming Paradigms – Parallel Architecture - Overview of some parallel systems. Multiprocessors and multi-computers.	5
2.	Modeling and analysis of parallel computations: Efficiency characteristics of parallel computation: speedup, efficiency, scalability - Model analysis: determining the parallel method execution time, estimating the maximum possible parallelization, computational load balancing - The Amdahl's and Gustavson-Barsis's laws - Aggregating the computation model.	7
3.	Parallel programming with MPI and communication : Overview of the MPI standard. Point-to-point communication operations. Synchronous and asynchronous modes of data transmission. Collective operations. Derived data types. Process management. Logical topologies.	7

4.	Basics of GPU Programming: Introduction to GPU Architecture - History, graphics processors, graphics processing units, GPGPUs. Clock speeds, CPU / GPU comparisons, heterogeneity. Accelerators, parallel programming, CUDA / OpenCL / OpenACC,	10
5.	Case study on parallel programming : Algorithm development – selection of communication operations - Case studies: matrix computations, solving partial differential equations – 1D Wave Equation.	10
	Total	39

Books:

- 1. Grama, Ananth, et al. Introduction to parallel computing. Pearson Education, 2003.
- 2. Pacheco, Peter. An introduction to parallel programming. Elsevier, 2011.
- 3. Kirk, David B., and W. Hwu Wen-Mei. Programming massively parallel processors: a hands-on approach. Morgan kaufmann, 2016.
- 4. Schmidt, Bertil, et al. Parallel programming: concepts and practice. Morgan Kaufmann, 2017.
- 5. Cai, Yiyu, and Simon See, eds. GPU computing and applications. Singapore: Springer, 2015.