Department of Metallurgy and Materials Engineering Indian Institute of Engineering Science and Technology Shibpur

Course-Curriculum and Syllabi

B.Tech. in Metallurgy and Materials
 Engineering
 3rd Semester to 8th Semester

	Third (3rd) Semester:								
SI.	Course Name	Course	Lo	Class ad/Wo			Class load	Marks	
No.	Course Maine	Code	L	Т	Р	Credit	per week	WAIKS	
1	Mathematics-III	MA21xx	3	0	0	3	3	100	
2	(Core Theory – I) Metallurgical Thermodynamics	MM2101	3	1	0	4	4	100	
3	(Core Theory – II) Transport Phenomena and Rate Processes	MM2102	3	0	0	3	3	100	
4	(Core Theory – III) Physical Metallurgy of Ferrous Alloys	MM2103	3	0	0	3	3	100	
5	(Core Theory – IV) Physics of Materials	MM2104	3	0	0	3	3	100	
	Theory Sub-Total		15	1	0	16	16	500	
6	(Core Lab – I) Transport Phenomena and Rate Processes Lab.	MM2171	0	0	3	2	3	50	
7	(Core Lab –II) Physical Metallurgy Lab.	MM2172	0	0	3	2	3	50	
8	(Core Lab –III) Physics of Materials lab.	MM2173	0	0	3	2	3	50	
9	Mini Project	MM2191	0	0	0	2	0	50	
	Sessional Sub-Total		0	0	9	8	9	200	
	3rd Semester Total					24	25	700	

Course Code	MM2101	Course Name	Metallurgical Thermodynami cs	Course Category	Core Theory	L 3	T 1	P 0
Pre- requisite Courses	NIL	Co- requisite Courses	NIL	Progressive Courses	1	VIL		

Courses	Courses		
Course Offering Department	Metallurgy and Materials Engineering	Data Book / Codes/Standar ds	NIL

Module	Syllabus	Duration (h)
Module-I	Fundamental concepts in thermodynamics : System, Surroundings, State, Extensive and Intensive properties and Heterogeneous systems, Internal energy, Heat capacity, Enthalpy, Isothermal and Isobaric processes	4
Module-II	Laws of thermodynamics: Entropy, Fugacity, Activity, Zeroeth, First, Second, Third laws and their applications	5
Module-III	Free Energy – Gibbs and Helmholtz Free Energy, Maxwell's Equations, Ellingham Diagram, Transformation Formula	5
Module- IV	Equilibrium: Concept of Equilibrium, Quasistatic Processes and Equilibrium constants, Equilibrium diagrams, Phase stability diagrams, stability of phases: intermetalic compounds and intermediate phases	5
Module-V	Solutions: Solutions and Partial molar quantities, Laws for ideal and non-ideal solutions, Concepts of standard states, thermodynamics of slags, basic concepts of ordered solution and some common types of ordering in alloys.	6
Module-VI	Phase formation and stability : Thermodynamics and theories of alloying, Phase rule applications, free-energy-composition diagrams and determination of liquidus, solidus and solvus lines, Spinodal Decomposition, Chemical Potential	7
Module-VII	Thermal Analysis of Materials: Differential Scanning Calorimetry, Thermogravimetric Analysis and Dilatometry	5

Learning Resources	 i) Introduction to metallurgical thermodynamics by David R. Gaskell: Taylor & Francis ii) Introduction to Materials and Metallurgical Thermodynamics by A. Ghosh published by PHI
-----------------------	--

Course	MM2102	Name	1	Course Category	Core Theory	L	Т	Р
Code			Phenomena and Rate Processes			3	0	0

Pre- requisite Courses		Co- requisite Courses		NIL	Progre ssive Course s	NIL
Course Offering Department			y and Materials gineering	Data Book / Codes/Standar ds	Λ	NIL

Module	Syllabus	Duration (h)
Module-I	Introduction : Homogeneous and heterogeneous reactions, Introductory concepts of kinetics of heterogeneous reactions, Concepts of rate controlling step and virtual maximum rate; Identification of reaction mechanisms	4
Module-II	Kinetics of Homogeneous Chemical Reactions : Law of mass action, Integrated Rate Equations, Variation of rate constant with temperature, Arrhenius equation, Theory of Absolute Reaction Rates	4
Module- III	Gas-Solid and Gas-Liquid Interfacial Reactions: Adsorption, Adsorption Isotherms, Examples of slow surface reactions in high temperature metallurgy	6
Module- IV	Momentum Transport : Newton's law of viscosity, Shell momentum balance, Concepts of Laminar and Turbulent flow, Friction factor	8
Module-V	Energy Transport : Fourier's law of heat conduction, Theories of thermal conductivity, Shell Energy Balances and Temepearture Distribution in Solids	8
Module- VI	Mass Transport : Steady and unsteady diffusion, Fick's laws of diffusion, Applications of diffusion equations in metallurgy, Diffusion: Fick's laws-their solution and application: Atomic mechanism of different kinds of diffusion, kirkendall effects, uphill diffusion.	6
Module- VII	Kinetics of Reactions of Porous Solids with Gases: Diffusion of gases through porous solids, Kinetics of reduction of oxides by gases, Kinetics of gasification of carbon by carbon dioxide, Kinetics of reduction of iron oxide by carbon	6

	1. D. R. Poirier, G. H. Geiger, Wiley, "Transport Phenomena in Materials Processing".
	2. A. Ghosh, S. Ghosh, S. (2014), Phi Learning Pvt. Ltd. "A textbook of metallurgical
Learning	kinetics"
Resource	3. R. Byron Bird, Warren E. Stewart, Edwin N. Lightfoot. Wiley International edition,
S	"Transport Phenomena".
	4. Julian Szekely, Academic Press, University of Michigan, "Fluid flow phenomena in
	metals processing"
	5. P.G. Shewmon, 2nd Edition, 1991, John Wiley and Sons, "Diffusion in solids"

Course	MM2103	Course	Physical Metallurgy	Course	Core	L	Т	Р
Code	WIW12105	Name	of Ferrous Alloys	Category	Theory	3	0	0

Pre- requisite Courses		Co- requisite Courses		Progressive Courses	NIL
Course Offering Department		Metallurgy and Materials Engineering		Data Book / Codes/Stand ards	NIL

Module	Syllabus	Duration (h)
Module-I	Introduction and classification of phase transformations	2
Module- II	Principles of heat treatment of steels Fe-Fe3C diagram; Formation of austenite - kinetics and mechanism; Grain growth and size of austenite grain; Homogeneity of austenite, Selection of austenitizing temperature and time.	4
Module- III	Phase transformation in steels Thermodynamics, Kinetics and Mechanisms of ferritic, pearlitic, Bainitic and Martensitic Transformations.	8
Module- IV	Crystal structure and atomic arrangement in solids: Defects in crystals: dimension, origin and their effects on properties; concepts of grains, grain boundaries and texture. (in more detail: Poiint group, Space group, Symmetry Elements)	6
Module- V	Construction, interpretation of different types of equilibrium phase diagrams. Interpretation of ternary equilibrium phase diagrams. Description of some important equilibrium phase diagrams e.g. metal- nonmetal, metal-metal, ceramic-ceramic etc.	8
Module- VI	Solidification of metals and alloys; thermal and constitutional super- cooling, cooling curves, coring and micro/macro segregations.	6
Module- VI	Optical microscopy: principles of different techniques, specimen preparation, Principles of various temperature measurement techniques. Thermal analysis measurement techniques.	4
Module- VII	Significance of structure-properties-processing relationship of engineering materials	4

	1. Physical Metallurgy, Robert W. Cahn and Peter Haasen
Learnin	2. Physical Metallurgy and Advanced Materials, R. E. Smallman and A.H.W. Ngan
g	3. Modern Physical Metallurgy and Materials Engineering, R. E. Smallman and R. J.
Resourc	Bishop
es	4. Physical Metallurgy Principles, Robert E. Reed-Hill
	5. Physical Metallurgy, Vijendra Singh

Course Code	MM2104	Course Name	Physics of Materials	Course Category	Core Theory	L 3	T 0	P 0
				1		1		
Pre-		Co-			Progressive			

requisite Courses		requisite Courses		NIL	Progressive Courses	NIL	
Course Offering Department		Metallurgy and Materials Engineering		Data Book / Codes/Standards	NIL		

Module	Syllabus	Duration (h)
Module-I	Electron theory of metals : de Broglie waves, uncertainty principle, Drude's Theory, wave function and Schrodinger equation; Free electron theory, concepts of density of states, probability interpretation, particle on a chain, potential barrier and quantum tunneling, potential well, qualitative summary of simple harmonic oscillation and Hydrogen atom. Occupation probability and examples.	7
Module-II	Zone theory : Brillouin zone, free electron band diagrams, potential in a crystal, electron dynamics and concept of holes, conductivity in relation to band structure, band structure of metals, semiconductors and insulators; direct and indirect band-gap semiconductors, intrinsic and extrinsic semiconductors. Ionic conduction - review of defect equilibrium and diffusion mechanisms, theory of ionic conduction, conduction in glasses, effect of stoichiometric and extrinsic defects on conduction, applications in sensors and batteries.	7
Module-III	Dielectric materials : Dielectric constant and polarization, linear dielectric materials, capacitors and insulators, polarization mechanism, non-linear dielectrics – pyro-, piezo and ferro-electric thermo-electric properties, hysteresis and ferro-electric domains and applications.	7
Module- IV	Optical materials : electron-hole recombination, solid-state LED's, Lasers and IR detectors, band gap engineering; Light interaction with materials – transparency, translucency and opacity, refraction and refractive index; reflection, absorption and transmission.	7
Module-V	Magnetic field, flux density, susceptibility and permeability; Orbital and spin, permanent magnetic moment of atoms, diamagnetism, paramagnetism and pauli paramagnetism, ferro-, anti-ferro and ferri- magnetism, Fe, Co, Ni and alloy additions, ferrites, magnetic hysteresis, soft and hard magnetic materials.	7
Module-VI	Superconductivity	2

Learning Resources	Physics of Materials: Essential Concepts of Solid-State Physics, Prathap Haridoss, Wiley (2015) Physics of Materials, 1st Edition, Y. Quere CRC Press (1998) Solid State Physics, 2 nd edition, J.S. Blakemore, Cambridge University Press (1985)
-----------------------	--

Course		Course	Transport	Course	Core	L	Т	Р
Code	MM2171	Name	Phenomena and Rate Processes Lab.	Category	Lab	0	0	3

Pre- requisite Courses	NIL	Co- requisite Courses	NIL	Progressive Courses	NIL
Course C Depart	0		rgy and Materials ngineering	Data Book / Codes/Standard s	NIL

Module	Syllabus	Duration (h)
Module-I	Estimation of activation energy	6
Module-II	Diffusion kinetics	6
Module-III	Oxidation of metals: Study of kinetics of oxidation of various metal samples at different temperatures	6
Module- IV	Kinetics of mixing	6
Module-V	Kinetics of direct reduction	6
Module-VI	Cementation kinetics	6

Learning Resources	 Metallurgical Thermodynamics Kinetics by S. K. Dutta and A. B. Lele, S Chand and Company Limited, New Delhi A Text Book of Metallurgical Kinetics by A. Ghosh and S. Ghosh, PHI Learning Private Limited A first Course on Iron and Steelmaking, by D. Mazumdar, Universities Press – IIM Kinetics of Metallurgical Reactions by H. S. Ray, Oxford & IBH publishing Co. Pvt. Ltd Heat and Mass Transfer by R. K. Rajput, S Chand and Company Limited, New Delhi

Course		Course	Physical		Core	L	Т	Р
Code	MM2172	Name	Metallurgy Laboratory	Course Category	Lab	0	0	3

Pre- requisite CoursesCo- requisite Courses	Metallurgy	Progressive Courses	NIL
---	------------	------------------------	-----

Course Offering Department	Metallurgy and Materials Engineering	Data Book / Codes/Standards	NIL
-------------------------------	--	--------------------------------	-----

Module	Syllabus				
Module	Syllabus	Duration (h)			
Module-I	Preparation of scratch free samples and demonstration of optical microscopes	3			
Module-II	Evaluation of inclusion rating of scratch free samples	3			
Module-III	Study of microstructure of Armco Iron and IF steel	3			
Module-IV	Study of microstructure of 0.3 wt% C steel annealed, normalized, oil quenched, and water quenched from 900°C	3			
Module-V	Study of microstructure of 0.5 wt% C steel annealed, normalized, oil quenched, and water quenched from 850°C	3			
Module-VI	Study of microstructure of 0.8 wt% C steel annealed, normalized, oil quenched, and water quenched from 850°C	3			
Module- VII	Study of microstructure of 1.1 wt% C steel annealed, normalized, oil quenched, and water quenched from 850°C	3			
Module- VIII	Study of Microstructure of various types cast iron	3			
Module-IX	Evaluation of microstructure and macrostructure of annealed Cu, Al, Mg, Zn etc.	3			
Module-X	Evaluation of microstructure and macrostructure of Ti and Ti based alloys	3			
Module-XI	Study of microstructure of different types of brasses (Cu-30Zn and Cu-40Zn) and bronzes (tin bronze, P bronze, Al bronze)	3			
Module- XII	Recovery, recrystallization and grain growth of deformed Cu	3			
Module- XIII	Identification of unknown samples	3			

|--|

Course	MM217	Course	Physics of	Course	Cor	L	Т	Р
Code	3	Name	Materials	Category	e Lab	0	0	3

	Laborator			
	У			

Pre- requisite Courses		Co- requisite Courses	Physics of Materials	Progressive Courses	NIL
	Course Offering Department		rgy and ngineering	Data Book / Codes/Standard s	NIL

Module	Syllabus	Duratio n (h)
Module-I	Atomic Packing: Model (Software: VESTA)	3
Module-II	Crystal Structure determination using X-rays	3
Module- III	Concept of diffraction and reciprocal lattice and stereographic projection	6
Module- IV	SEM orientation: Electron-Matter interaction outcome	3
Module-V	Resistivity and conductivity measurement	6
Module- VI	Determination of bandap	3
Module- VII	Determination of electrical mobility from transistor I-V characteristic	3
Module- VIII	Measurement of dielectric properties: Determination of dielectric constant, relaxation time, analysis of Nyquist plot	6
Module- IX	Case Studies and problem solving: Identification of different physics involved in some practical problems and approach towards solving the problem related to materials engineering	9

Learning Resource s

Course		Course	Principles of		Core	L	Т	Р
Code	MM2205	Name	Extractive Metallurgy	Course Category	Theory	3	0	0

Pre- requisite Courses	NIL	Co- requisite Courses	NIL	Progressive Courses	NIL
	Offering tment		rgy and Materials Engineering	Data Book / Codes/Standards	NIL

Module	Syllabus	Duration (h)
Module-I	Introduction : Important ores and minerals and their occurrence in India; Importance of mineral-dressing	2
Module-II	Mineral dressing : Various Comminution Processes - theories involved, brief description and applications, various concentration techniques and their applications, mineral dressing circuits and flowsheets	8
Module-III	Unit Processes in Pyrometallurgy : Introduction, Calcination, Roasting, Agglomeration, Reduction smelting, Matte smelting, Flash smelting, and Converting	12
Module- IV	Unit Processes in Hydrometallurgy : Introduction, Leaching, Purification of Leach Liquor, Solvent Extraction and Ion-exchange Processes, Techniques of Metal Recovery from Aqueous phase	6
Module-V	Unit Processes in Electrometallurgy : Introduction, Faraday's laws of electrolysis, concept of overvoltage, limiting current density, Electrowinning and Electro-refining with reference to copper, zinc and aluminium	6
Module-VI	Flowsheets and numerical calculations : Flow-charts, Material balance and Heat balance	2

	Fourth (4t	h) Semester:	:					
SI.	Course Name	Course	Lo	Class ad/Wo		Credit	Class load	Marks
No.	Course Mame	Code	L	Т	Р	Creun	per week	
1	(Core Theory – V) Principles of Extractive Metallurgy	MM2205	3	0	0	3	3	100
2	(Core Theory – VI) Heat Treatment	MM2206	3	1	0	4	4	100
3	(Core Theory – VII) Deformation Behaviour of Materials	MM2207	3	0	0	3	3	100
4	(Core Theory – VIII) Computational Materials Engineering	MM2208	3	0	0	3	3	100
5	(Core Theory – IX) Iron Making	MM2209	3	0	0	3	3	100
	Theory Sub-Total		15	1	0	16	16	500
6	(Core Lab – IV) Extractive Metallurgy Lab.	MM2274	0	0	3	2	3	50
7	(Core Lab – V) Heat Treatment Lab.	MM2275	0	0	3	2	3	50
8	(Core Lab – VI) Deformation Behaviour of Materials Lab.	MM2276	0	0	3	2	3	50
9	(Core Lab-VII) Computational Materials Engineering Lab.	MM2277	0	0	3	2	0	50
	Sessional Sub-Total		0	0	12	8	9	200
	3rd Semester Total					24	25	700

Course Code	MM2205	Course Name	Principles of Extractive	Course Category	Core Theory	L 3	Т 0	P 0
			Metallurgy	Metallurgy			3	3
Pre- requisite Courses	NIL	Co- requisite Courses	NIL	Progressive Courses	NIL			
Course Offering Department		Metallurgy and Materials Engineering		Data Book / Codes/Standards	NIL			
				·		D		

Module	Syllabus	Duration (h)
--------	----------	-----------------

Module-I	Introduction : Important ores and minerals and their occurrence in India; Importance of mineral-dressing	2
Module-II	Mineral dressing : Various Comminution Processes - theories involved, brief description and applications, various concentration techniques and their applications, mineral dressing circuits and flowsheets	8
Module-III	Unit Processes in Pyrometallurgy : Introduction, Calcination, Roasting, Agglomeration, Reduction smelting, Matte smelting, Flash smelting, and Converting	12
Module- IV	Unit Processes in Hydrometallurgy : Introduction, Leaching, Purification of Leach Liquor, Solvent Extraction and Ion-exchange Processes, Techniques of Metal Recovery from Aqueous phase	6
Module-V	Unit Processes in Electrometallurgy : Introduction, Faraday's laws of electrolysis, concept of overvoltage, limiting current density, Electrowinning and Electro-refining with reference to copper, zinc and aluminium	6
Module-VI	Flowsheets and numerical calculations : Flow-charts, Material balance and Heat balance	2

Learning Resources	 Principles of Extractive Metallurgy - A. Ghosh, and H. S. Ray Non-ferrous Extractive Metallurgy - H. S. Ray, R. Sridhar and K. C. Abraham Extractive Metallurgy Principles - T. Rosenqvist Extractive Metallurgy - J. Gilchrist
-----------------------	--

Course	MM2206	Course	Course Heat Treatment	Course	Core	L	Т	Р
Code	1011012200	Name	Heat Heatment	Category	Theory	3	1	0

Pre- requisite Courses	Nil	Co- requisite Courses	Nil	Progressive Courses	NIL
Course Offering Department			urgy and Materials Engineering	Data Book / Codes/Stan dards	NIL

Module	Syllabus	
Module-I	Introduction and classification of heat treatment processes Various annealing, Normalizing, Hardening and Tempering treatments; Heat treatment-Microstructure-Property correlations.	8

Module- II	TTT and CCT diagrams Construction and utility of T-T-T and C-C-T diagrams, Critical cooling rate, Factors affect the T-T-T and C-C-T diagrams; Effect of Alloying elements.	6
Module- III	Hardenability Significance, Critical and ideal critical diameter, Jominy End Quench method, Factors affecting hardenability. Characteristics of quenchants, Different quenching media. Development of residual stresses, Quench cracking.	6
Module-IV	Thermo-mechanical treatments Principles and processes- austempering, martempering, patenting, ausforming etc. HSLA steels and rebars.	6
Module-V	Heat treatment of different types of steels Classifications, Role of major alloying elements, heat treatment process and microstructural changes; Retained austenite, Sub-zero treatment	3
Module-VI	Surface hardening of steels Classification, Principles, Case carburizing (solid, liquid and gas), Nitriding, Cyaniding, Carbonitriding, Plasma nitriding, Selective hardening, Flame hardening, Induction hardening, Laser hardening etc. Measurement of case depth and its relation with time and temperature.	4
Module- VII	Design for heat treatment Heat treatment furnaces- their temperature and atmosphere control; Defects in heat treated parts - Causes and remedies; Automation.	2

Cou	Course Code MM	MM2207	Course	Deformation	Course Cotogony	Core-	L	Т	Р
Cod		IVIIVI2207	Name	Behaviour of Materials	Course Category	Theory	3	0	0

Pre- requisite Courses		Co- requisite Courses		NIL	Progressive Courses	NIL
	Course Offering Department		lurgy and Engineering	Data Book / Codes/Standards	NII	L

Module	Syllabus	Duration (h)
Module-I	Introduction to deformation behaviour: Concept of stresses and strains; engineering and true stress/strain; analysis of simple tension test data	6
Module-II	Theory of Elasticity: State of stress at a point, State of plane stress, Principal stresses and planes, Mohr's circle of stress (2D), State of stress in 3D; Strain at a point: Definition of normal and shear strains; Concept of hydrostatic stress and stress deviator; Elastic stress-strain relationships; Elastic strain energy	6

Module- III	Theory of Plasticity: Flow Curve, power-law erelationship; Relationship between true stress and engineering stress; Yield criteria for ductile metals: Von Mises' criterion and Tresca criterion; Combined stress tests; Yield locus; Octahedral shear stress and shear strain; Invariants of stress and strain; Plastic stess-strain relationships: Levy-Mises equations and Prandtl-Reuss equations	8
Module- IV	Plastic deformation of a single crystal: Review of crystal planes and directions; Point defects; Line defects; Deformation by slip; Critically Resolved Shear Stress; Deformation by twinning; Stacking faults; Generalized flow curve for a FCC single crystal	6
Module-V	Dislocation theory : Edge, screw and mixed dislocations; Burgers vector and Burgers circuit; Peierl-Nabarro stress; Cross-slip of screw dislocations; Dislocation reactions; Dislocations in FCC lattice:Partial disloactions, Lomer-Cottrell barrier; Dislocations in HCP lattice and in BCC lattice; Stress-field of dislocations; Elastic strain energy of dislocations; Force between dislocations; Dislocation climb; Intersection of Dislocations; Sources of dislocations; Multiplication of dislocations; Interaction between adislocation and a point defect	8
Module-VI	Strengthening Mechanisms : Grain boundaries; Equi-chesive temperature; Hall-Petch relationship; Yield Point phenomenon; Strain- aging; Solid-sloution strengthening; Strenthening from fine particles: Age hardening; Fibre strengthening; Martensite strengthening; Ausforming; Strain hardening: cold-worked structure; Effect of annealing on cold- worked metal; Bauschinger effect	8

	 G.E. Dieter: Mechanical metallurgy, McGraw Hill Book Company, New Delhi, 1986. J.N. Harris: Mechanical Working of Metals- Theory and Practice, Pergamon Press,
Learning Resources	 Oxford, 1983. 3. J. Lin, D. Balint, M. Pietrzyk: Microstructure evolution in metal-forming processes, Woodhead Publishing Limited, 2012. 4. W. F. Hosford and R. M.Caddell: Metal Forming: Mechanics and Metallurgy, Prentice-Hall, 2011.
	5. A.S.M. Handbook Vol. 14, Forming and Forging, ASM International
	6. J. G. Lenard, Metal Forming Science and Practice, Elsevier Science Ltd., U.K, 2002

Course	NIN 10000	Course	Computational Materials	Course Cotogory	Core	L	Т	Р
Code	MM2208	Name	Engineering	Course Category	Theory	3	0	0

Pre- requisite Courses	NIL	Co- requisite Courses	NIL	Progressive Courses	NIL
Course Offering Department		Meta	llurgy and Materials Engineering	Data Book / Codes/Standards	NIL

Module	Syllabus	Duration (h)
Module-I	Need of Computational Materials Engineering: Examples of challenges in design of materials for challenging applications, bottleneck areas of materials technology, introduction to the Integrated Computational Materials Engineering (ICME) approach.	5
Module-II	Atomistic schemes in Computational Materials Engineering: Introduction to basics of statistical mechanics, basics of molecular dynamics simulation, application of molecular dynamics for property prediction, basics of Monte Carlo approach and its application for modelling materials properties.	12
Module- III	Prediction of thermodynamic properties of materials: Application of CALPHAD type approaches for prediction of phase diagrams and introduction to recent algorithms using atomistic simulations.	6
Module- IV	Mesoscale methods in materials science: Quantification of microstructure: Application of Monte Carlo and Cellular Automata method for generation of microstructure, Introduction to Phase Field Method and Finite Element Method.	7
Module-V	Basics of Multiscale Modelling involving development of method for improved structure-property correlation: Basics of bridging schemes in multiscale models.	5
Module-VI	Machine Learning in Materials Science: Introduction to Machine Learning, Data Pre-processing, Supervised Learning Algorithms including Artificial	5

Learning Resources	 Computational Materials Engineering: An Introduction to Microstructure Evolution, KGF Janssens, D. Raabe, E. Kozeschnik, M. Miodownik, B. Nestler, Academic Press. Statistical mechanics: A survival guide, A. M. Glazer and J. S. Wark, Oxford University Press. Integrated Computational Materials Engineering (ICME) for Metals: Using multiscale modelling to invigorate engineering design with science, M.E. Horstemeyer, Wiley. Machine Learning, Anuradha Srinivasaraghavan, Vincy Joseph, Wiley. Deep Learning using Python, S. Lovelyn Rose, L. Ashok Kumar, D. Karthika Renuka, Wiley
-----------------------	--

Course Code	MM2274	Course Name	Extractive Metallurgy Lab.	Course Category	Core Lab	L 0	T 0	P 3
Pre- requisite Courses	NIL	Co- requisite Courses	Principles of Extractive Metallurgy	Progressive Courses		NIL		
Course Offering Department			gy and Materials Igineering	Data Book / Codes/Standards		NIL		

Module	Syllabus					
Module-I	Assignment on comminution of ore-crushing and grinding circuit, major equipment used, open circuit and close circuit					
Module-II	<i>e-II</i> Study of design and operation of primary crushing equipment (i) Jaw crusher and (ii) Gyratory crusher					
Module- III	Study of design and operation of secondary crushing equipment: (i) Roll crusher and (ii) Cone crusher	3				
Module- IV	Study of design and operation of grinding equipment - (i) Ball mill	3				
Module-V	Study of design and operation of Wilflay table	3				
Module-VI	Sieve Analysis of Particles: Plotting of Cumulative Curve	6				
Module- VII	Study of kinetics of cementation of copper from aqueous solutions by zinc, and iron	3				
Module- VIII	Study of kinetics of leaching of oxide metals in dilute acidic solutions	3				
	 Process selection in Extractive Metallurgy by Peter Hayes, SBA Puli Principles of Extractive Metallurgy, Vol.1 by Fathi Habashi, , Gordo Breach, New York 					

Learning Resources

Course	MM2275	Course	Heat Treatment	Course	L	Т	Р
Code	IVIIVI2273	Name	Laboratory	Category	0	0	3

Pre- requisite Courses	Physical Metallurgy of Ferrous Alloys	Co- requisit e Courses	Heat Treatment	Progressive Courses	NIL
	Course Offering Department		urgy and Materials Engineering	Data Book / Codes/Standard s	ASTM Standards

Module	Syllabus	Duration (h)
Module-I	Heat Treatment Furnaces Types, Construction, Circuit diagram	3

Module-II	Operation and Control of Heat Treatment Furnaces	3
Module-III	Thermocouple Calibration	3
Module- IV	Effect of carbon content (0.3, 0.55, 0.8 and 1.1 wt.%) on microstructure and hardness of plain carbon steels	3
Module-V	Effects of cooling rate (annealing, normalizing, oil quenching and water quenching) on microstructure and hardness of eutectoid steel	3
Module-VI	Jominy End Quench Test	3
Module- VII	Effects of time and temperature on tempering of alloy steels	3
Module- VIII	Malleablizing heat treatment of white cast iron	3
Module-IX	Heat treatment of high speed steel	3
Module-X	Case hardening treatment	3
Module-XI	Microstructure and hardness evaluation of TMT rebar	3
Module- XII	Viva Voce	3

Learning Resources	 Testing of Engineering Materials, H.E. Davis, G.E. Troxell, G.F.W. Hauck, 4th Ed., McGrew Hill. 2.ASM Handbook Volume 8: Mechanical Testing and Evaluation, H. Kuhn, D. Medin (Ed.), ASM International. 3. Practical Non-Destructive Testing, B. Raj, T. Jayakumar, M. Thavasimuthu, Norasa.
-----------------------	--

			Deformation			L	Т	Р
Course Code	MM2276	Course Name	Behaviour of Materials Laboratory	Course Category	Core Elective	0	0	3

Pre- requisite Courses	NIL	Co- requisite Courses	Deformation Behaviour of Materials	Progressive Courses	NIL
	Course Offering Department		y and Materials gineering	Data Book / Codes/Stand ards	NIL

Module	Syllabus	Duration (h)	
--------	----------	-----------------	--

Module-I	Introduction to basics of MATLAB / Python	3
Module-II	Analysis of tensile test data to evaluate elastic modulus, 0.2% yield strength, ultimate tensile strength and fracture strength of metals {using Microsoft Excel / MATLAB / Python}	3
Module-II	Analysis of tensile test data to evaluate strength coefficient, and strain-hardening coefficient, assuming power-law strain-hardening {using Microsoft Excel / MATLAB / Python}	3
Module-III	Analysis of two-dimensional state of stress (plane stress): Transformation of stresses, evaluation of principal stresses, principal directions, maximum shear stress, angle of plane for maximum shear stress; Construction of Mohr's circle of stress – two dimensions {using MATLAB / Python}	3
Module-IV	Analysis of three-dimensional state of stress: Evaluation of invariants of stress, principal normal stresses and corresponding principal directions, principal shear stress, hydrostatic stress, deviatoric stress, J_2 Construction of Mohr's circle of stress – three dimensions {using MATLAB / Python}	3
Module-V	Analysis of three-dimensional state of strain: Evaluation of strain tensor and rotation tensor from a given displacement vector, evaluation of volumetric strain, hydrostatic strain, strain deviator {using MATLAB / Python}	3
Module- VI	Evaluation of elastic strains from elastic stresses and vice-versa for isotropic elastic solids; evaluation of shear modulus and bulk modulus; evaluation of elastic strain energy {using MATLAB / Python}	3
Module-VII	Finite Element simulation of elastic deformation {using COMSOL Multiphysics/ABAQUS}	3
Module- VIII	Evaluation of yielding criteria of ductile metals using Von Mises' and Tresca criteria; Construction of yield locus for a biaxial state of stress	3
ModuleIX	Finite Element simulation of elasto-plastic deformation {using COMSOL Multiphysics/ABAQUS}	3
Module-X	Generation of crystal structures and development of understanding of dislocations in various crystal structures (FCC, BCC and HCP). Visualization of dislocations (edge and screw) using ATOMSK code.	3
Module-XI	Study of dislocation-solute interaction in representative alloy systems. Stress fields around dislocation (Volterra dislocations). Study of dislocation stress-field and solute misfit and its ultimate effect on the strength of metallic systems.	6
Module-XII	Viva-Voce	3

Learning Resources		
	Computational	

Course		Course	Computational	Course	Core	L	Т	Р
Code	MM2277	Name	Materials Engineering Laboratory	Category	Lab	0	0	3

Pre- requisit		Co- requisi te	Computational Materials Engineering	Progressi ve Courses	NIL
------------------	--	----------------------	--	----------------------------	-----

e Courses		Course s			
	Offering rtment	Meta	llurgy and Materials Engineering	Data Book / Codes/St andards	NIL

Module	Syllabus	Duration (h)
Module- I	Introduction to Integrated Computational Materials Engineering for structure-property correlation.	3
Module- II	Introduction to Atomistic Simulation Environment and basics of Python programming.	3
Module- III	Application of statistical mechanics-based tools for determination of thermodynamic properties such as specific heat capacity, enthalpy and free energy.	3
Module- IV	Molecular dynamics of elemental metals and binary alloys to study the phase stability.	3
Module- V	Monte Carlo based microstructure generation-studying grain growth phenomena.	3
Module- VI	Cellular Automata based microstructure design studies.	3
Module- VII	Using COMSOL to simulate any one of the multi-physics phenomena (Induction heating of steel slab, Cooling or solidification of steel, continuous casting, multiscale 3D packed reactor, localised corrosion, anodization of Al).	3
Module- VIII	Using ANSYS to simulate steelmaking processes: Creation of geometry, computational mesh generation, formulation of models, turbulence models, etc.	3
Module- iX	Application of ANSYS to simulate metal forming processes.	3
Module- X	Application for machine learning based approaches for microstructure identification (e.g., Deep Learning approaches in image analysis).	3

Learnin g Resourc es	 Computational Materials Engineering: An Introduction to Microstructure Evolution, KGF Janssens, D. Raabe, E. Kozeschnik, M. Miodownik, B. Nestler, Academic Press. Statistical mechanics: A survival guide, A. M. Glazer and J. S. Wark, Oxford University Press. Integrated Computational Materials Engineering (ICME) for Metals: Using multiscale modelling to invigorate engineering design with science, M.E. Horstemeyer, Wiley. Machine Learning, Anuradha Srinivasaraghavan, Vincy Joseph, Wiley. Deep Learning using Python, S. Lovelyn Rose, L. Ashok Kumar, D. Karthika Renuka, Wiley
-------------------------------	--

5th Semester:

Sl.	Course Name	Course	Class	s Load/W	eek	Credit	Class
No		code	L	Т	Р		load/ week
1.	Economics/ Polymer and Refractory Technology	HU5601/ CH501	2/2	1/1	0	3/3	3/3
2.	Iron and Steel Making	MT501	3	1	0	4	4
3.	X-Ray and Electron Diffraction	MT502	3	1	0	4	4
4.	Metal Casting Technology	MT503	3	1	0	4	4
5.	Heat Treatment Technology	MT504	2	1	0	3	3
6.	EL I (OE):	MT505	3	0	0	3	3
	Environmental issues in Metallurgical Industries						
	Theory Sub-total		16/16	5/5	0	21/21	21/21
7.	Metal Casting Technology Lab	MT551	0	0	3	2	3
8.	X-Ray and Electron Diffraction Lab	MT552	0	0	2	1	2
9.	Heat Treatment Technology Lab	MT553	0	0	3	2	3
	Sessional Sub-total		0	0	8	5	8
	5 th Semester Total					26/26	29/29

MT 501: Iron and Steel Making

3-1-0 [F.M.: 100]

Sl.	Module Name and Topics	No.	of
No.		Lectur	res
1.	Introduction: Raw materials used for iron making and their availability in India. Characteristics of suitable raw materials. Blast furnace (BF) iron making- design features of BF and supporting units, viz. Coke ovens, Stoves, gas cleaning systems	03	
2.	Up gradation of raw materials: Washing of ore & coal; Agglomeration of iron ores – process control and current innovations.	02	
3.	Reduction mechanism and equilibrium in carbon-oxygen system; slag formation, chemistry and characteristics; Reserve Zones, Cohesive Zone and their importance.	06	
4.	Modern trends to minimize coke rate and emissions Injection techniques; Blast furnace (BF) irregularities and remedies. Treatment of slag and outgoing gas.	03	
5.	Automation and Instrumentation; Treatment of hot metal outside BF.	03	
6.	Alternate routes of Iron making - Direct reduced iron (DRI); Gas based and Coal- based DRI; Hot briquetted iron (HBI); Problems and prospects of DRI in India.	05	
7.	Steel making: Historical perspective and current scenario; Principles of refining, Steel making in Basic Oxygen Converters, kinetics of reactions; brief overview of various techniques of Top-blown, Bottom-blown and Combined-blown BOF; lance design, slag characteristics	04	
8.	Arc furnace steel making - production of alloy steels; Induction furnace steel making: Use of DRI in steel making.	03	
9.	Secondary steel making - Quality, de-oxidation and de-sulphurization; Vacuum techniques- remelting and refining; Injection Metallurgy.	03	

10.	Inclusion removal and its modification. Casting of ingots and continuous casting. Defects and remedies.	04
11.	Energy and Environmental aspects in steel making, concept of zero CO ₂ emission.	02
12.	Latest developments in steel making processes.	03
13.	Principles of Ferro-alloys production - Application of Submerged Arc furnace; Brief description on production of Ferromanganese, Ferrosilicon, Ferrochrome etc. Application of Thermit reduction process, Preparation of special Ferro-alloys and their applications.	03
	Total	44

Suggested Reading:

- 1. An Introduction to Modern Iron Making R. H. Tupkary
- 2. An Introduction to Modern Steel Making R. H. Tupkary
- 3. Principles of Blast Furnace Ironmaking: Theory and Practice A. K. Biswas
- 4. Ironmking and Steelmaking: Theory and Practice Ahindra Ghosh and Amit Chatterjee

MT 502: X-Ray and Electron Diffraction

3-1-0 [F.M.: 100]

S1.	Module Name and Topics	No.	of
No.		Lectur	res
1.	Fundamentals of diffraction- Electron-electron interaction, electron-atom interaction, electron-crystal interaction.	04	
2.	Reciprocal lattice, X-ray diffraction- Theory, Intensity calculation, Diffractometer, Crystal structure indexing, Phase analysis, Spectroscopic analysis, Defect analysis.	16	
3.	Texture analysis - Basics, Pole figure and orientation distribution function (ODF) analysis.	08	
4.	Transmission Electron Microscope – Equipment features, Sample preparation, Various targets, Electron optics, Imaging, double beam tilting, Kikuchi pattern analysis.	10	
5.	Selected area diffraction pattern (SADP) analysis, Electron dispersive spectroscopy, Electron energy loss spectroscopy, Convergent Beam Electron diffraction.	06	
	Total	44	

Suggested Reading:

- 1. Elements of X-Ray Diffraction B. D. Cullity and S. R. Stock
- 2. X-Ray and Electron Diffraction Studies in Materials Science David Dyson
- 3. X-Ray Diffraction: A Practical Approach C. Suryanarayana and M. Grant Norton
- 4. Electron Diffraction in the Transmission Electron Microscope P. E. Champness

MT 503: Metal Casting Technology

3-1-0 [F.M.: 100]

S1.	Module Name and Topics	No.	of
No.		Lectur	es

1.	Casting as a manufacturing method.	02
2.	Pattern making - design and selection of pattern materials.	06
3.	Moulding; selection of moulding technique, mould-making materials - sand based aggregates, other materials for moulding, Sand testing, Various modern moulding and core-making techniques.	08
4.	Melting: furnaces, melt treatment for ferrous and non-ferrous materials. Special casting methods - Die casting, Shell mould casting, EPC, Precision casting methods.	08
5.	Outline of heat-treatment of selected alloy castings - important grades of alloy cast irons, Austempering of ductile iron;	06
6.	Common grades of cast products, Rheo-casting and Thixocasting, Entrainment of films in molten metal.	06
7.	Casting defects, remedies and quality assurance.	06
	Total	42

Suggested Reading:

- 1. Casting Technology and Cast Alloys A. K. Chakrabarti
- 2. Principles of Metal Casting R. W. Heine, C. R. Loper and P. C. Rosenthal
- 3. Principles of Foundry Technology P. L. Jain
- 4. Metal Casting: Computer-aided Design and Analysis B. Ravi

MT 504: Heat Treatment Technology

2-1-0 [F.M.: 100]

Sl.	Module Name and Topics	No.	of
No.		Lectu	res
1.	Review of physical metallurgy principles underlying heat treatment of steels, T- T-T and C-C-T diagrams, hardenability of steels, role of alloying elements in steels, annealing and normalizing heat treatments, quenching media and their characteristics, quenching and transformation stresses; Hardening and tempering of steels.	14	
2.	Surface hardening of steels: Chemical and non-chemical processes.	04	
3.	Thermal and thermo-mechanical treatment of metals and alloys; austempering, martempering, patenting, ausforming etc.	06	
4.	Heat treatment of plain carbon steels, tool and special alloy steels; Heat treatment of cast iron; Heat treatment of some important non-ferrous alloys.	08	
5.	Heat treatment defects and their rectifications.	04	
6.	Heat treatment furnaces and its atmosphere control.	04	
7.	Heat treatment shops: mechanization, automation and layout.	02	
	Total	42	

Suggested Reading:

1. Heat Treatment: Principles and Techniques - T. V. Rajan, C. P. Sharma and Ashok Sharma

- 2. Steel and its Heat Treatment K. E. Thelning
- 3. Steels: Heat Treatment and Processing Principles G. Krauss
- 4. Heat Treater's Guide: Practices and Procedures for Irons and Steels Harry Chandler
- 5. Heat Treater's Guide: Practices and Procedures for Nonferrous Alloys Harry Chandler

MT 505: Environmental Issues in Metallurgical Industries

3-0-0 [F.M.: 100]

Sl.	Module Name and Topics	No. of
No.		Lectures
1.	Concept of Environment: Classification of Pollutants and their sources.	03
2.	Air pollution in industries. Control of specific air pollutants.	05
3.	Characterization of waste waters: B.O.D., suspended solids, metals etc. Water quality standards and monitoring instruments.	08
4.	Characterization of different industrial effluents, pollution control for specific pollutants, such as chromium, cadmium, mercury, phenolic wastes, arsenic, ammonia etc.	10
5.	Pollution control: Iron & Steel industries - concept of zero CO ₂ emission; Non- ferrous industries, plating and metal finishing industries. Disposal of solid wastes and their utilization.	12
6.	Legislation and code of Practice with regard to pollution.	04
	Total	42

Suggested Reading:

- 1. Energy and Environmental Management in Metallurgical Industries R. C. Gupta
- 2. Handbook of Industrial Pollution and Control S. C. Bhatia
- 3. Pollution Control in Chemical and Allied Industries N. Hanley
- 4. Environment and Pollution: An Ecological Approach R. S. Ambasht and P. K. Ambasht

MT 551: Metal Casting Technology Lab

0-0-3 [F. M.:

100]

Sl.	Module Name and Topics	No.	of
No.		Labs.	
1.	Demonstration of various types of patterns and core boxes: single piece, split and cope and drag	01	
2.	Study on Pattern drawing	02	
3.	Methoding of various gating systems on different types of patterns	02	

4.	Wooden Pattern making	02
5.	Orientation of the Foundry laboratory	01
6.	Sand preparation (moulding and core sand) and testing of sand quality	01
7.	Sand mould preparation - hand mould and machine mould	02
8.	Core making : Oil core and CO ₂ core	01
9.	Metal casting (Aluminium) using sand mould and die casting moulds	01
10.	Identification of casting defects and finding their possible solutions	01
	Total	14 Labs.

MT 552: X-Ray and Electron Diffraction Lab

0-0-2 [F. M.:

50]

Sl.	Module Name and Topics	No.	of
No.		Labs.	
1.	X-Ray diffractometer - demonstration of basic features and safety requirements	01	
2.	Operation and calibration of diffractometer	01	
3.	Recording X-Ray diffraction profile of standard samples (Si, Al ₂ O ₃) - pattern analysis	01	
4.	Recording powder diffraction pattern of Al/Cu powders- pattern analysis	01	
5.	 Microstructure and XRD pattern correlation and analysis of: as cast sample (Al/mild steel/Cu/Brass/Bronze) samples hot rolled sample (Al/mild steel/Cu/Brass/Bronze) samples cold rolled sample (Al/mild steel/Cu/Brass/Bronze) samples annealed sample (Al/mild steel/Cu/Brass/Bronze) samples cold rolled and annealed sample (Al/mild steel/Cu/Brass/Bronze) samples 	05	
6.	Grain size determination by using Scherrer equation. Limitations and corrections	01	
7.	Residual stress in Al and Stainless steel samples –measurement and analysis	02	
8.	Crystal structure determination of unknown samples	02	
	Total	14 lab	s.

MT 553: Heat Treatment Technology Lab

0-0-3 [F. M. 100]

Sl No.	Module Name and Topics	Instruction	No. of Contact hours
1.	Architecture of heat treatment furnaces	Common to all students.	03
2.	Operation and maintenance of furnaces		03

3.	Thermocouple calibration	Carry out within the scheduled laboratory classes.	03
4.	Determination of hardenability of steel (Jominy End Quench Test)		03
5. 6.	Age hardening of AA6063 Al Alloy Spheroidisation of SAE 52100 bearing steel	Sl No. 5-15: Any two labs for a student as a project mode.	30 (approx.)
7.	Precipitation hardening of Maraging steel		
8.	Secondary hardening of tool (AISI D2 or M2) steels	and concerned heat treatment	
9.	Duplex ageing behaviour of AA7075 Al alloy	schedules as well as post heat treatment characterizations.	
10.	Hardening and tempering of En24 steel		
11.	Cyclic heat treatment of high carbon steel	No fixed laboratory time.	
12.	Thermo-Mechanical Processing of HSLA steel	Needs to submit electronic report within a specified time.	
13.	Effects of cooling rate on microstructure and hardness of steel		
14.	Malleablisation of White Cast Iron		
15.	Heat treatment of Grey Cast Iron		

Total

42 hours

6th Semester:

Sl. No	Course Name	Course code	Class	Load/W	Veek	Cre dit	Class load/
110			L	Т	Р	un	week
1.	Polymer and Refractory Technology	CH601/HU5	2/2	1/1	0	3	3
	/Economics	601					
2.	Mechanical Properties Evaluation	MT601	3	1	0	4	4
3.	Metallurgy of Ferrous Alloys	MT602	3	1	0	4	4
4.	Non-ferrous Materials	MT603	3	1	0	4	4
5.	EL I (DE):		3	0	0	3	3
	Powder Metallurgy	MT604					
	Hydrometallurgy and Electrometallurgy	MT605					
	Theory Sub-total		14/14	4/4	0	18	18
6.	Mechanical Properties Evaluation Lab	MT651	0	0	3	2	3
7.	Metallurgy of Ferrous Alloys Lab	MT652	0	0	3	2	3
8.	Communication Skill	MT653	0	0	2	1	2
9.	Comprehensive Viva-voce I	MT671	0	0	0	1	0
	Sessional Sub-total		0	0	8	6	8
	6 th Semester Total					24	26

After 6th semester, "industrial visit/3 to 4 weeks industrial training" is compulsory.

MT 601: Mechanical Properties Evaluation

3-1-0 [F.M.: 100]

Sl.	Module Name and Topics	No. of
No.		Lectures
1.	Introduction to mechanical behaviour of solids, Material properties and their classifications, Importance of evaluation of materials properties.	04
2.	Hardness testing of metals.	05
3.	Tensile testing of elastic, anelastic and plastic properties of materials. The relations between stress, strain, strain rate and temperature for plastically deformable solids.	07
4.	Tests to evaluate compression, shear and impact properties of materials. Determination of the influence of composition, heat-treatment, microstructure, temperature, environmental effects etc. on mechanical properties of materials emphasizing the relationships between microstructure and mechanical properties.	08
5.	Fatigue and creep in materials; tests to determine the fatigue and creep behaviours of materials.	08
6.	Principles and techniques of non-destructive testing methods to evaluate materials characteristics - interpretation of test results.	10
	Total	42

Suggested Reading:

- 1. The Testing and Inspection of Engineering Materials H. E. Davis, G. E. Troxell and C. T. Wiskocil
- 2. Mechanical Metallurgy G. E. Dieter
- 3. Testing of Metallic Materials A. V. K. Suryanarayana
- 4. Practical Non-Destructive Testing Baldev Raj, T. Jayakumar and M. Thavasimuthu

MT 602: Metallurgy of Ferrous Alloys

3-1-0 [F.M.: 100]

Sl.	Module Name and Topics	No.	of
No.		Lectu	res
1.	Properties of pure iron; effect of impurities on the characteristics of iron,	05	
	Interstitial and substitutional solid solution of iron; Solubility and diffusivity of		
	solute atoms in iron based systems.		
2.	Diffusional and non-diffusional phase transformation in steels - pearlitic,	05	
	bainitic and martensitic transformations. Effect of alloying elements on the		
	structure and properties of steel.		
3.	Theory of strengthening of steels. Controlled thermo-mechanical processing of	05	
	steels.		
4.	Evolution of microstructures in low and high alloy steels, Effect of multiphase	05	
	microstructure on the mechanical properties of steel.		

5.	Physical metallurgy of new generation steels - ultra low carbon steels, precipitation hardenable steels, steels inheriting transformation induced plasticity, high strength low alloy steels, Ultrahigh strength steels.	06
6.	Emerging steels for off shore and on shore applications. Theories for improvement of time dependent properties of steels.	04
7.	Theories of nucleation and growth of graphite in grey and white cast iron. Alloying of cast iron - its influence on the microstructures, Effect of microstructures on the properties of alloy cast iron. Austempered ductile iron, its processing-structure-property correlation, emerging alloy cast iron of varying morphology of graphite.	12
	Total	42

Suggested Reading:

- 1. Physical Metallurgy of Steels W. C. Leslie
- 2. Physical Metallurgy and the Design of Steels F. B. Pickering
- 3. Steels: Microstructure and Properties H. K. D. H. Bhadeshia and R. W. K. Honeycombe
- 4. Cast iron Technology Roy Elliott

MT 603: Non-Ferrous Materials

3-1-0 [F.M.:

100]

S1.	Module Name and Topics	No.	of
No.		Lectur	es
1.	Basic steps in extraction of important non-ferrous metals with flow sheet; Roasting - Kellogg diagram, techniques of roasting.	10	
2.	Fundamental steps for extraction of Cu, Ni, Zn, Al, Mg, Ti and nuclear metals.	10	
3.	Principle of selection of extraction steps from specific types of ores; Waste treatment, waste management and Environmental aspects. Numerical problems related to extraction and refining including material balance.	08	
4.	Elements of physical metallurgy of non-ferrous metals - classification, physical, chemical and mechanical properties of some important aluminium, titanium, copper and other important non-ferrous alloys.	10	
5.	Heat treatment of some important non-ferrous alloys and their applications.	04	
	Total	42	

Suggested Reading:

- 1. Extraction of Nonferrous Metals H. S. Ray, R. Sridhar and K. P. Abraham
- 2. Modern Technology of Nonferrous Metals and Metal Extraction- EIRI Books
- 3. ASM Handbook: Vol. 2: Properties and Selection: Nonferrous Alloys and Special Purpose Materials
- 4. Structure-Property Relations in Nonferrous Metals A. M. Russell and K. L. Lee

MT 604: Powder Metallurgy

2-1-0 [F.M.: 100]

S1.	Module Name and Topics	No.	of
No.		Lectur	es
1.	Development and scope of powder metallurgy; Different metal powder production methods viz., milling, atomization, reduction, electrolysis, carbonyl processes.	10	
2.	Characterization of metal powders - chemical composition, structure, shape, size and their determination; powder flow, apparent density, tap density, compressibility and porosity measurements; treatment of metal powders.	10	
3.	Behaviour of metal powders during compaction, Different compaction techniques like die compaction, isostatic pressing, powder rolling, powder extrusion etc. Types of presses, tooling and die design.	10	
4.	Mechanism of sintering of metal powders; solid state and liquid phase sintering; evaluation of sintered product.	06	
5.	Production and uses of powder metallurgy products viz. Filters Contact materials, Bearings, Structural parts and dispersion strengthened materials.	06	
	Total	42	

Suggested Reading:

- 1. Powder Metallurgy: Its Physics and Production <u>Paul Schwarzkopf</u>, <u>Claus G. Goetzel</u> and <u>George Stern</u>
- 2. Powder Metallurgy: Science, Technology and Materials Anish Upadhyaya and G. S. Upadhyaya
- 3. ASM Handbook: Vol. 7: Powder Metallurgy
- 4. Powder Metallurgy A. K. Sinha

MT 605: Hydrometallurgy and Electometallurgy

2-1-0 [F.M.: 100]

S1.	Module Name and Topics	No.	of
No.		Lectu	res
1.	Minerals and ores; pyro- and hydrometallurgy - selection of the extraction process route; steps involved in hydrometallurgy and electrometallurgy; importance of hydrometallurgy for utilizing lean grade ores and for extraction metals for nuclear applications.	10	
2.	Thermodynamics of solutions- ideal solutions: activity of elements in dilute solutions; review of laws of electrolysis – Debye and Huckels theory of electrolytic dissociation; Pourbaix (Predominance area diagram).	08	
3.	Leaching of ores - mechanisms, thermodynamics of reactions - Nernst equation and applications; selection of leachants; specific extraction processes of copper, nickel, zinc, gold etc; role of oxygen in leaching; kinetics of leaching- factors involved.	10	

4.	Bacterial or microbial leaching - reaction mechanism of aerobic and anaerobic	06
	bacteria; factors involved in bacteria-assisted reactions, practical aspects.	
5.	Purification of leach liquor - Solvent Extraction and Ion Exchange; flow charts; Electrolytic recovery of metals from aqueous solutions and from melts; calculation of current and voltage efficiency of electrolytic processes.	06
6.	Flow charts of extraction processes of copper, nickel, uranium, zinc etc.	02
	Total	42

Suggested Reading:

- 1. Principles of Extractive Metallurgy A. Ghosh and H. S. Ray
- 2. Hydrometallurgy S. Venkatachalam
- 3. Hydrometallurgy Fathi Habashi
- 4. Unit Processes of Extractive Metallurgy R. D. Pehlke

MT 651: Mechanical Properties Evaluation Lab 100]

S1. Module Name and Topics No. of No. Labs. 1. Introduction 01 2. 05 Hardness Measurements: Rockwell, Brinell, Vickers, Poldi, Shore 3. Micro Hardness Testing: Vickers 02 4. Impact Testing: Charpy 01 Tensile Testing using Instron Machine with and without extensometer 5. 02 Erichsen Cupping Test 01 6. Non Destructive Testing: Dye Penetrant and Magnetic Particle test 7. 02 Total 14 Labs.

MT652: Metallurgy of Ferrous Alloys Lab

0-0-3 [F.M.:

0-0-3 [F.M.:

100]

S1.	Module Name and Topics	No.	of
No.		Labs.	
1.	Study of microstructure of as-cast steel- Hadfield Manganese steel.	01	
2.	Microstructure evolution of (i) as cast, (ii) as rolled and (iii) various heat treated EN-8 steel specimens.	02	
3.	Microstructure evolution of (i) as cast, (ii) as rolled and (iii) various heat treated EN-31 steel specimens.	02	
4.	Microstructure evolution of 1.1% carbon steel in (i) fully annealed, (ii) spheroidised annealed, (iii) normalized, (iv) oil quenched and (v) quenched and tempered conditions.	03	

5.	Evolution of microstructure and hardness evaluation of low carbon steel under	01
	continuous cooling conditions.	
6.	Microstructure evolution of high alloy steel (i) austenitic stainless steel, (ii)	03
	2205 and 2507 grade duplex stainless steels and (iii) TWIP steels.	
7.	Microstructure evolution of various types of general purpose cast irons and	02
	alloy cast irons.	
	Total	14 Labs.

MT653: Communication Skill

0-0-2 [F.M.:

50]

Sl.	Module Name and Topics	No. of
No.		Lectures
1.	Introduction to communication skills	01
2.	Attainment descriptors for communication skills	01
3.	Definition of listening, reading, writing and communicating	01
4.	Barriers in the path of communication, signposting, outlines, rephrasing, listening to conversation (Formal and Informal)	01
5.	Techniques of reading, skimming, scanning, SQ3R technique, writing skills, paragraph	02
6.	Power point presentation of current topics	08
	Total	14

Suggesting Reading:

- 1. How to Effectively Communicate Paul Newton
- 2. Interpersonal Skills for Entrepreneurs Melissa Contreras

7th Semester:

Sl. No	Course Name	Course code	Class	Load/V	Veek	Cred it	Class load/
INU			L	Т	Р	11	week
1.	Joining of Materials	MT701	2	1	0	3	3
2.	Degradation of Materials & Their Prevention	MT702	2	1	0	3	3
3.	Composites and Ceramic Materials	MT703	2	1	0	3	3
4.	Accounts & Financial Mgmt	HU 7	2	0	0	2	2
5.	EL II (OE):-	MT731/1	2/2	1/1	0	3/3	3/3

	Theory Sub-total		10/10	4/4	NIL	14/1 4	14/14
6.	Joining of Materials Lab	MT751	0	0	3	2	3
7.	Degradation of Materials & Their Prevention Lab	MT752	0	0	3	2	3
8.	Composites and Ceramic Materials Lab	MT753	0	0	3	2	3
9.	Project & Thesis I	MT754	0	0	2	1	2
	Sessional Sub-total :		NIL	NIL	11	7	11
	7th Semester Total					21/2 1	25/25

EL II (OE):

(i) Selection of Engineering Materials MT731/1 (OE) - to be offered for other departments (All).

MT 701: Joining of Materials 100]

2-1-0 [F.M.:

Sl.	Module Name and Topics	No. of
No.		Lectures
1.	Basic Welding Processes, their principles and applications - Gas Welding, Arc Welding, Thermit Welding, Resistance Welding, Spot Welding, Pressure Welding etc.	06
2.	Advanced Material Joining Techniques - TIG, MIG, Submerged Arc Welding, Electro- slag Welding, Plasma Arc. Welding, Electron Beam Welding, Laser Beam Welding, Ultrasonic Welding, Explosive Welding, Atomic Hydrogen Welding, Under Water Welding, Diffusion Bonding, Friction Stir Welding etc. Principles of Brazing, Soldering and joining of dissimilar materials.	10
3.	Selection of Joining Process; Classification of Electrodes & Weld Joints, Welding Codes, Weld ability of different Materials and their Metallurgical and Mechanical aspects.	08
4.	Physics of Welding - Welding Arc and their types, structure, mechanism, stability and characteristics, Mechanism of Arc blow, its effect and remedies. Types of metal transfer and forces affecting it.	10

5.	Defects: Residual stresses and distortion in welded joints and their remedies. Design,	06
	Inspection & Testing of weld joints, Economics of joining processes.	
	Total	40

MT702: Degradation of Materials & Their Prevention 100]

Sl.	Module Name and Topics	No. of
No.		Lectures
1.	Introduction: Technical and economic aspect of the study of corrosion; review of the electrochemical principles of corrosion cell; exchange current density; electrode potential and standard cells, EMF series and galvanic series— their applications; Polarization: types, factors involved, effect on corrosion rate; application of Faraday's law in corrosion.	10
2.	Mixed Potential theory; Tafel equation, construction and interpretation of Polarization diagrams, different forms of corrosion-uniform attack, galvanic, crevice, pitting, intergranular, selective leaching, erosion corrosion and stress corrosion cracking, Hydrogen effect, corrosion fatigue and liquid metal embrittlement-their characteristic features, causes and remedial measures; corrosion testing methods and interpretation of results.	16
3.	Oxidation — Oxide films, Pilling-Bedworth ratio, and their effects on kinetics, oxide defect structures, rate laws, types of oxidation, materials for use at elevated temperatures.	6
4.	Principles of corrosion prevention-material selection and design aspects; control of environment including inhibitors, cathodic and anodic protection, coatings and other surface protection techniques of metals and alloys.	6
5.	Degradation by wear of materials; its characteristics, wear testing, Wear-resistant materials.	4
	Total	42

MT 703: Composites and Ceramic Materials 100]

2-1-0 [F.M.:

2-1-0 [F.M.:

Sl. No.	Module Name and Topics	No. o Lectures	of
1.	Composite Materials: Classification of composite materials. Dispersion strengthened, particle reinforced and fiber reinforced composites, Mechanics and strengthening	6	

 mechanisms in composite materials. Properties of composites: Elastic Properties, Strength and toughness. Design of composites; In-situ and ex-situ composites; Interfaces between reinforcements and matrices in composites; Bonding Mechanisms, Bond Strength, Interfacial Toughness. Polymer Matrix Composites: Polymer Matrices, Processing Techniques, Glass Reinforced Plastics, Carbon Fiber Composites; Metal matrix Composites; Metal Matrices, Processing Techniques, Interfacial Controls, Discontinuously Reinforced Composites, Fiber Composites; Ceramic Matrix Composites: Ceramic Matrices, Processing Techniques, Alumina Matrix Composites, Glass Matrix Composites, Nanocomposites and its usefulness. 	6 8 8 8
Design of composites; In-situ and ex-situ composites; Interfaces between reinforcements and matrices in composites; Bonding Mechanisms, Bond Strength, Interfacial Toughness. Polymer Matrix Composites: Polymer Matrices, Processing Techniques, Glass Reinforced Plastics, Carbon Fiber Composites; Metal matrix Composites; Metal Matrices, Processing Techniques, Interfacial Controls, Discontinuously Reinforced Composites, Fiber Composites; Ceramic Matrix Composites: Ceramic Matrices, Processing Techniques, Alumina Matrix Composites, Glass Matrix Composites, Nanocomposites and its usefulness. Ceramic Materials: Introduction to ceramics as engineering materials, Common crystal	8
reinforcements and matrices in composites; Bonding Mechanisms, Bond Strength, Interfacial Toughness. Polymer Matrix Composites: Polymer Matrices, Processing Techniques, Glass Reinforced Plastics, Carbon Fiber Composites; Metal matrix Composites; Metal Matrices, Processing Techniques, Interfacial Controls, Discontinuously Reinforced Composites, Fiber Composites; Ceramic Matrix Composites: Ceramic Matrices, Processing Techniques, Alumina Matrix Composites, Glass Matrix Composites, Nanocomposites and its usefulness. Ceramic Materials: Introduction to ceramics as engineering materials, Common crystal	8
Interfacial Toughness. Polymer Matrix Composites: Polymer Matrices, Processing Techniques, Glass Reinforced Plastics, Carbon Fiber Composites; Metal matrix Composites; Metal Matrices, Processing Techniques, Interfacial Controls, Discontinuously Reinforced Composites, Fiber Composites; Ceramic Matrix Composites: Ceramic Matrices, Processing Techniques, Alumina Matrix Composites, Glass Matrix Composites, Nanocomposites and its usefulness. Ceramic Materials: Introduction to ceramics as engineering materials, Common crystal	
Polymer Matrix Composites: Polymer Matrices, Processing Techniques, Glass Reinforced Plastics, Carbon Fiber Composites; Metal matrix Composites; Metal Matrices, Processing Techniques, Interfacial Controls, Discontinuously Reinforced Composites, Fiber Composites; Ceramic Matrix Composites: Ceramic Matrices, Processing Techniques, Alumina Matrix Composites, Glass Matrix Composites, Nanocomposites and its usefulness. Ceramic Materials: Introduction to ceramics as engineering materials, Common crystal	
Reinforced Plastics, Carbon Fiber Composites; Metal matrix Composites; Metal Matrices, Processing Techniques, Interfacial Controls, Discontinuously Reinforced Composites, Fiber Composites; Ceramic Matrix Composites: Ceramic Matrices, Processing Techniques, Alumina Matrix Composites, Glass Matrix Composites, Nanocomposites and its usefulness. Ceramic Materials: Introduction to ceramics as engineering materials, Common crystal	
Matrices, Processing Techniques, Interfacial Controls, Discontinuously Reinforced Composites, Fiber Composites; Ceramic Matrix Composites: Ceramic Matrices, Processing Techniques, Alumina Matrix Composites, Glass Matrix Composites, Nanocomposites and its usefulness. Ceramic Materials: Introduction to ceramics as engineering materials, Common crystal	0
Composites, Fiber Composites; Ceramic Matrix Composites: Ceramic Matrices, Processing Techniques, Alumina Matrix Composites, Glass Matrix Composites, Nanocomposites and its usefulness. Ceramic Materials: Introduction to ceramics as engineering materials, Common crystal	0
Processing Techniques, Alumina Matrix Composites, Glass Matrix Composites, Nanocomposites and its usefulness. Ceramic Materials: Introduction to ceramics as engineering materials, Common crystal	0
Nanocomposites and its usefulness. Ceramic Materials: Introduction to ceramics as engineering materials, Common crystal	0
Ceramic Materials: Introduction to ceramics as engineering materials, Common crystal	8
	Q
	0
structures in ceramics; Silicates, clay, minerals, graphite and carbides, structure of	
glasses. Imperfections in ceramics, Classification of ceramics and their applications;	
Ceramic raw materials and their characterization, Raw material preparation and	
	4
Mechanical behavior of structural ceramics-brittleness and its improvement, Different	6
toughness measuring techniques. Significance of Fracture toughness, elastic modulus	
Functional ceramics diverse application in cutting tool, mobile phone microwave	6
active ceramics and bio-ceramics.	
	44
	processing of ceramics, Casting processes like drain casting, tape casting etc. Properties of ceramic powder particle-size, shape and surface properties. Flocculation and rheology. Phase diagrams and phase transformation in ceramic material. Forming Processes: Extrusion, Pressing, Injection Moulding. Mechanical behavior of structural ceramics-brittleness and its improvement, Different toughness measuring techniques. Significance of Fracture toughness, elastic modulus and strength of structural ceramics. Electrical, magnetic and optical properties of important ceramic systems. Functional ceramics diverse application in cutting tool, mobile phone microwave devices polycrystalline diamond and solid oxides for fuel cells, Introduction to electro

MT731/1: Selection of Engineering Materials (OE II)

2-1-0[F.M.:100]

Sl.	Module Name and Topics	No. of
No.		Lectures
1.	Relationship between processing— structure-properties of various engineering materials, Materials selection criteria-shape, micro structural factors, performance criteria in service and other strategic requirements of engineering components to be designed. Economic considerations.	14
2.	Technologically important material properties-physical, mechanical, chemical, thermal optical and electrical properties, Materials used in important engineering sectors.	12

3.	Types of design, materials data and design tools, Methodology for selection of	14
	materials for the components, selection of processes to meet the design requirements,	
	Systematic selection process-pertinent case studies, Multiple constraints; its handling	
	strategies.	
	Total	40

MT 751: Joining of Materials Lab 100]

S1. Module Name and Topics No. of No. Contact hours 1. Visit to the lab and acquaintance with the equipment 3 2. Soldering & brazing with on hand practice 6 Gas cutting and welding 3. 6 4. Resistance spot welding 3 Manual Metal Arc Welding (MMAW) with on hand practice and spatter loss 5. 6 calculation TIG and MIG welding with on hand practice 9 6. 7. Submerged Arc Welding 3 Plasma arc cutting for stainless steel and non-ferrous metals and alloys 8. 3 Repeat process 9. 3 Laboratory Viva-voce 10. 3 Total 45 hours

MT 752: Degradation of Materials & Their Prevention Lab 0-0-3 [F. M.: 100]

S1.	Module Name and Topics	No.	of
No.		contact	
		hours	

0-0-3 [F. M.:

1.	Visit to the lab and acquaintance with the equipment	3
2.	Immersion test in various solutions with analysis	12
3.	Potentiodynamic polarisation studies in various electrolytes with analysis	9
4.	Electrochemical Impedance Spectroscopy with analysis	6
5.	Examination, analysis and interpretation of corroded surfaces and products	6
6.	Repeat process	3
7.	Laboratory Viva-voce	3
	Total	42 hours

MT 753: Composites and Ceramic Materials Lab 100]

Sl.	Module Name and Topics	No.	of
No.		contact	
		hours	
1.	Visit to the lab and acquaintance with the equipment	3	
2.	Preparation of metal matrix composite	3	
3.	Metallographic and mechanical properties study of different composite materials	18	
4.	Metallographic and mechanical properties study of different ceramic materials	12	
5.	Repeat process	3	
6.	Laboratory Viva-voce	3	
	Total	40	

MT754: Project Thesis I [F.M.:50]

0-0-2

Sl. No.	Module Name and Topics	No. contact hours	of
1.	Selection of topic, literature review, work plan, report submission and its presentation by each student, question-answer session by the fellow students and faculty members.	26-30 hours	

0-0-3[F. M.:

	Total	26-30
		hours

8th Semester:

Sl. No	Course Name	Course code	Clas	s Load/	Week	Cred it	Class load/
INO			L	Т	Р	11	
							week
1.	Materials Processing	MT801	3	1	0	4	4
2.	Materials Characterisation	MT802	2	1	0	3	3
3.	Design and Selection of Materials	MT803	2	1	0	3	3
		N/T001/1				2	
4.	Elective II (DE):-	MT821/1	3	0	0	3	3
		MT821/2					
5.	Elective III (DE):-	MT822/1	2	1	0	3	3
		MT822/2					
	Theory Sub-total		12	4	0	16	16
		1.570.51					
6.	Materials Processing Lab	MT851	0	0	3	2	3
7.	Materials Characterisation Lab	MT852	0	0	3	2	3
8.	Project Thesis II	MT853	0	0	4	2	4
9.	Project Thesis II Viva-voce	MT854	0	0	0	1	0
10.	Comprehensive Viva-Voce II	MT871	0	0	0	2	0
	Sessional Sub-total		NI L	NIL	10	9	10
	8th Semester Total					25	26

- 1) Elective II (DE):-
- (i) Nano-structured and functionally graded materials (MT821/1)

- (ii) Principles of Thin Films and Coatings (MT821/2)
- 2) Elective III (DE):
 - i) Fracture Mechanics and Failure Analysis (MT822/1)
- ii) Transportation Phenomena in Metallurgical Industries (MT822/2)

MT 801: Materials Processing 0[F.M.:100]

3-1-

Sl.	Module Name and Topics	No.	of
No		Lectur	res
1.	Fundamental of metal working: Classification of forming processes, mechanics of metal	8	
	working, temperature in metal working - hot working vs. cold working, strain rate		
	effects, sliding and sticking friction, lubrication, residual stress.		
2.	Forging: general aspects, closed-die and open-die forging, different types of forging equipment; forging in plane strain, forging loads, forging defects.	6	
3.	Rolling: terminology of rolled products, different types of rolling mills; deformation zone, neutral point, angle of bite, draft in rolling; forward slip and backward slip, derivation of rolling load, friction hill, roll flattening, rolling variables; problem and defects in rolled products.	10	
4.	Extrusion: direct and indirect extrusion, hydrostatic extrusion, extrusion equipment, derivation of extrusion pressure, deformation, lubrication and defects in extrusion.	6	
5.	Drawing: process and equipments, hydrodynamic lubrication, maximum possible reduction in a pass under ideal condition, draw stress with friction and back tension; common defects, production of tubes including seamless tubes by extrusion and rolling.	6	
6	Sheet metal forming: different forming methods, forming limit criteria, defects in formed	6	
	parts; Automation and recent advances in metal working technology.		
	Total	42	

MT802: Materials Characterisation [F.M.:100]

2-1-0

Sl. No.	Module Name and Topics	No. Lecture	of
110.		Lecture	5
1.	Fundamentals of crystallography, reciprocal lattice and structure analysis in materials.		
	Determination of grain size and lattice strain from X-ray diffraction patterns.		
2.	Fundamentals of electron microscopy - possible interactions between specimen and the	16	
	incident electron beam. Construction and application of transmission and scanning		

	Total	40
4.	Advances in characterization techniques.	10
	magnetic measurements in materials characterization.	
3.	Thermal analyses as tools for materials characterization. Dilatometry, resistivity and	8
	microscopy; Atomic force microscopy.	
	Principles and application of Auger electron spectroscopy, Scanning tunneling	
	electron microscopes in materials characterization. Electron probe micro analyzer;	

MT 803: Design and Selection of Materials 100]

2-1-0 [F. M.:

Sl.	Module Name and Topics	No.	of
No.		Lecture	es
1.	Relationship between processing-structure-properties of various engineering materials, Materials selection criteria-shape, micro structural factors, performance criteria in service and other strategic requirements of engineering components to be designed. Economic considerations.	14	
2.	Technologically important material properties: physical, mechanical, chemical, thermal optical and electrical properties, Materials used in important engineering sectors.	12	
3.	Types of design, materials data and design tools, Methodology for selection of materials for the components, selection of processes to meet the design requirements, Systematic selection process-pertinent case studies, Multiple constraints; its handling strategies.	14	
	Total	40	

MT 821/1 (DE II): Nano-structured and functionally graded materials 1001

3-0-0 [F. M.:

0	נט	

S1.	Module Name and Topics	No.	of
No.		Lecture	S
1.	Introduction to Nanoscience and Nanotechnology. Underlying physical principles of	10	
	nanotechnology: Nanostructured Materials, Fundamental physicochemical principles		
	underlying the size dependence of the properties of nanostructured matter.		

2.	Quantum confinement, single electron charging, Synthesis of nanostructured materials. Top down and bottom up approaches to building nanostructured materials. Properties of nanomaterials. Overview of self-assembly.	12
3.	The basic tools of nanotechnology, scanning probe microscopy and near-field optics; electron and ion-based microscopy and manipulation.	8
4.	Introduction to functionally graded materials, classification of functionally graded materials, properties and preparation techniques. Areas of application.	10
	Total	40

3-0-0

MT 821/2 (DE II): Principles of Thin Films and Coatings [F.M.:100]

S1. Module Name and Topics No. of No. Lectures 1 Introduction to thin films, Environment and molecular and plasma processes in thin 10 film deposition; Cold and thermal plasma; Requirement for substrate: Substrate thin films Sticking cleaning; Formation of coefficient, Formation of thermodynamically stable cluster - nucleation and Growth process; Properties of thin films: Microstructure. Single crystalline films. Polycrystalline films. Nanocrystalline thin film. Amorphous films, Metastable films, Surface morphology, 2. 8 Film density, Stress in thin films, Adhesion. Stoichiometry. 3. Mechanical, electrical, thermal, chemical, and optical properties of thin films. 4 4. Thermal evaporation Resistance evaporation. Electron beam evaporation. Molecular 10 beam epitaxy; Laser ablation. Synthesis of nanomaterials (nanowires, nanoribbons); Electrical discharges used in thin film deposition Mechanism of electrical discharges. I-V characteristic of electrical discharges. Townsend discharge. Glow discharge Arc. 5. Practical electric discharge configuration for deposition of thin films, Direct current 8 electric discharges. Radio-frequency discharges, Microwave discharges, Electron cyclotron resonance plasma, Matching units, Floating potential, Bias potential, Plasma potential, Effective bias, Self-bias. Total 40

MT 822/1 (DE III): Fracture Mechanics and Failure Analysis 100]

S1.	Module Name and Topics	No.	of
No.		Lectu	res
1.	Introduction; Continuum Mechanics: stress, strain; Linear Elasticity; beam theory, constitutive laws;	4	
2.	Linear Elastic Fracture Mechanics: K1 singularity, plasticity considerations, KIC, CTOD, resistance curves, plane-stress analyses;	6	
3.	Interfacial Fracture Mechanics: theory, crack-path considerations; sub critical crack growth; Plasticity; yield criteria, deformation and flow theories, constitutive laws, Prandtl-Reuss equations, limit analysis.	8	
4.	Nonlinear Elastic Fracture Mechanics: HRR singularity, JIC, JR (Δa) resistance curves, TR, CTOA, non-stationary crack-growth analysis.	8	
5.	Environmentally-Assisted Fracture; stress corrosion, hydrogen embrittlement, corrosion fatigue, Cyclic Fatigue Failure: mechanistic aspects, crack propagation, damage-tolerant analysis, variable amplitude loading small cracks, crack closure, stress-strain/life analysis.	10	
6.	Physical Basis of Toughness: intrinsic toughening - metals, extrinsic toughening - ceramics, composites, Fracture statistics.	6	
	Total	42	

MT 822/2 (DE III): Transportation Phenomena in Metallurgical Industries 2-1-0[F.M.:100]

Sl.	Module Name and Topics	No. of
No.		Lectures
1.	Review of the basic concepts in heat, mass and momentum transfer.	6
2.	Empirical treatment of reaction rates, activated state.	6
3.	Various expressions for reaction velocity and rate equations, rate controlling mechanisms: Reduced time plots.	9

4.	Phenomena in heterogeneous kinetics of transformation of single particles and	12
	particulate beds by fluids.	
5.	Some kinetic models. Selected examples from metallurgical engineering.	9
	Total	42

MT851: Materials Processing Lab 100]

0-0-3[F.M.:

Sl.	Module Name and Topics	No. of
No.		contact
		hours
1.	Visit to the lab and acquaintance with the equipment	3
2.	Characterisation of powder using optical microscope (OM)	6
3.	Green compaction of powder using hydraulic press	3
4.	Measurement of green density	3
5.	Sintering of green compacted powder sample	6
6.	Hardness measurement and microstructural study of sintered samples	6
7.	Hot forging and cold and hot rolling practices	6
8.	Repeat process	3
9.	Laboratory Viva-voce	3
	Total	39 hours

MT852: Materials Characterisation Lab 100]

0-0-3[F.M.:

Sl. No.	Module Name and Topics	No. of contact hours
1.	Visit to the lab and acquaintance with the equipment	3
2.	Determination of grain size using Scherrer formula in X-ray diffraction	6

3.	Measurement of lattice strain using single line profile (SLP) analysis	6
4.	Study of surface topography and determination of chemical composition of precipitate particles using SEM and EDS facilities.	6
5.	Study of thin foil and powder sample using TEM	6
6.	Study of phase transformation using DSC	6
7.	Repeat process	3
8.	Laboratory Viva-voce	3
	Total	39 hours

MT853: Project Thesis II [F.M.:100]

Sl.	Module Name and Topics	No.	of
No.		contact	t
		hours	
1.	Literature review on selected topic, work done, report submission and its presentation	52-60	
	by each student, question-answer session by the fellow students and faculty members.	hours	
	Total	52-60	
		hours	

MT854: Project & Thesis II Viva-Voce 0[F.M.:50]

0-0-

S1.	Module Name and Topics	No.	of
No.		contac	t
		hours	
1	Viva-voce examination pertaining to project work done	0	
1.	viva-voce examination pertaining to project work done	0	
	Total	0	

MT871: Comprehensive Viva-Voce II 0[F.M.:100]

0-0-4

Sl.	Module Name and Topics		No.	of
No.			contac	et
			hours	
1.	Viva-voce examination pertaining to theory subjects of 7th and 8th semesters		0	
	То	tal	0	