

Specialization:

1. Surface Engineering

2. Iron and Steel Technology

FIRST SEMESTER

Sl. No	Paper	Credit
1	Paper-I (Dep. Core)	3
2	Paper-II (Dep. Core)	3
3	Paper-III (Dep. Core)	3
4	Paper-IV (Dep. Elec/ Open Elec.)	3
5	Paper-V (Dep. Elec/ Open Elec.)	3
	Theory Subtotal	15
6	Lab - I/ Mini Project - I	2
7	Lab - II/Mini Project - II	2
8	Lab - III/Mini Project - III	2
	Practical Subtotal	7
	Total Credit	21

Note:

1. Paper – I, II and III are compulsory subjects for the particular specialization.

2. Paper – IV, V are elective subjects, which are to be selected from the table below. A student may also opt for open electives offered by other departments for first semester M. Tech Students (subject to availability).

 Lab – I, II, III are typically related to Paper – I, II and III. However, in some cases, if the Department feels, these may be related to Paper – IV and V also (for departmental electives only). In cases, where lab facility is not available, mini projects related to Paper – I/II/III may be offered.

4. The credits mentioned above are indicative and are as such to be followed. However, in cases, where it is essential to include a Tutorial or to increase the lab hours, credits may be increased to 4 (Theory)/3(Practical). In such cases, the total credit should not exceed 24.

a) Departmental Core Papers for the specialization (Paper – I, II, III)

Specialization: 1. Surface Engineering, and 2. Iron and Steel Technology

Sl. Subject No code	Subject	ubject Subject Name	Class Load/Week			Total	Credit	Marks
	code	L	Т	Р	load (h)	Credit	Marks	
1	MM5101	Materials Technology	3	0	0	40	3	100
2	MM5102	Advanced Characterization of Materials	3	0	0	40	3	100
3	MM5103	Advanced Thermodynamics and Kinetics	3	0	0	40	3	100

b) Departmental Elective Papers for the specialization (Paper – IV)

Specialization: 1. Surface Engineering

SI.	Subject	Subject Subject Name	Class Load/Week			Total	Credit	Marks
No code	code Subject Name	L	Т	Р	load (h)	creuit	Marks	
1	MM5121	Surface Treatment and Modification	3	0	0	38	3	100
2	MM5122	Mechanical Behaviour of Thin Films	3	0	0	42	3	100

Specialization: 2. Iron and Steel Technology

Sl. Su	Subject	Subject Subject Name	Class Load/Week			Total	Credit	Marks
No	code		L	Т	Р	load (h)	creat	Marks
1	MM5123	Advanced Iron and Steel Making	3	0	0	42	3	100
2	MM5124	Crystallographic Texture of Materials	3	0	0	40	3	100

b) *Open (non-departmental) Elective* Papers (**Paper – V**) offered by the Department of Metallurgy and Materials Engineering

Sl.	Subject	Subject Subject Name		Class Load/Week			Credit	Marks
No	No code	Subject Name	L	Т	Р	load (h)	creat	Maiks
1	MM5161	Mechanical Behaviour of Engineering Materials	3	0	0	42	3	100
2	MM5162	Multiscale Modelling	3	0	0	40	3	100
3	MM5163	Microstructure Modelling	3	0	0	40	3	100

c) Departmental Labs for the specialization (Lab - I, II, III)

Specialization: 1. Surface Engineering, and 2. Iron and Steel Technology

Sl.	Subject	Subject Name	Class Load/Week			Total	Credit	Marks
No	No code		L	Т	Р	load (h)	creuit	1411 KS
1	MM5171	Materials Technology Lab.	0	0	3	33	2	100
2	MM5172	Advanced Characterization of Materials Lab.	0	0	3	30	2	100

d) Departmental Mini Projects for the specialization

Specialization: 1. Surface Engineering, and 2. Iron and Steel Technology

Sl.	Subject	bject Subject Name	Class Load/Week			Total	Credit	Marks
No	code	Subject Name	L	Т	Р	load (h)	credit	Marks
1	MM5173	Mini Project on Materials Technology	0	0	3	30	2	100
	MM5174	Mini Project on Advanced Characterization of Materials	0	0	3	30	2	100
	MM5175	Mini Project on Advanced Thermodynamics and Kinetics	0	0	3	30	2	100

Note: In cases, where Mini Project if offered, the related Paper (Paper – I, II or III) should be mentioned.

Sl. No	Paper	Credit
1	Paper - VI (Dep. Core)	3
2	Paper - VII (Dep. Core)	3
3	Paper - VIII (Dep. Core)	3
4	Paper-IX (Dep. Elec/ Open Elec.)	3
5	Paper-X (Dep. Elec/ Open Elec.)	3
	Theory Subtotal	15
6	M. Tech Project Part - I (Term Paper)	4
7	Term Paper Seminar & Viva-voce	2
8	Practical Subtotal	6
	Total Credit	21

SECOND SEMESTER

Note:

1. Paper – VI, VII and VIII are compulsory subjects for the particular specialization.

- 2. Paper IX, X are elective subjects, which are to be selected from the table below. A student may also opt for open electives offered by other departments for second semester M. Tech Students (subject to availability).
- 3. For M. Tech Thesis Part I (Term Paper), the student will work under the guidance of the Supervisor(s) from the beginning of the second semester, and submit the Term Paper (literature review and objective and scope of the broad area of M. Tech thesis work). Submission will be followed by a seminar and viva-voce.
- 4. The credits mentioned above are indicative and are as such to be followed. However, in cases, where it is essential to include a Tutorial credits may be increased to 4 (Theory). In such cases, the total credit should not exceed 23.

a) Departmental Core Papers for the specialization (Paper – VI, VII, VIII)

Specialization: 1. Surface Engineering, and 2. Iron and Steel Technology

SI.	Sl. Subject	bject Subject Name	Class Load/Week			Total	Credit	Marks
No	code	Subject Name	Subject Name L T	Р	load (h)	creuit	Maiks	
1	MM5201	Manufacturing Processes	3	0	0	40	3	100
2	MM5202	Design and Selection of Materials	3	0	0	40	3	100
3	MM5203	Defects in Materials	3	0	0	40	3	100

b) Departmental Elective Papers for the specialization (Paper - IX)

Specialization: 1. Surface Engineering

Sl.	Subject	ubject Subject Name	Class I	.oad/V	Veek	Total	Credit	Marks
No code	code Subject Name	L	Т	Р	load (h)	credit	Marks	
1	MM5221	Surface Degradation and Protection	3	0	0	40	3	100
2	MM5222	Engineering Tribology	3	0	0	44	3	100

Specialization: 2. Iron and Steel Technology

SI.	Subject	ect Subject Name	Class Load/Week			Total	Credit	Marks
No code	code Subject Name	L	Т	Р	load (h)	creuit	MarKS	
1	MM5222	Engineering Tribology	3	0	0	44	3	100
2	MM5223	Advanced Ferrous Materials	3	0	0	45	3	100
3	MM5224	Advanced Joining Techniques	3	0	0	42	3	100

b) *Open (non-departmental) Elective* Papers (Paper – X) offered by the Department of Metallurgy and Materials Engineering

SI.	Subject	ject Subject Name	Class Load/Week			Total	Credit	Marks
No	No code	Subject Name	L	Т	Р	load (h)	credit	
1	MM5261	Nanostructures and Nanomaterials	3	0	0	38	3	100
2	MM5262	Microelectromechanical Systems: Materials and Processes	3	0	0	44	3	100
3	MM5263	Biomedical Materials and Devices	3	0	0	38	3	100
4	MM5264	Non-destructive Testing	3	0	0	45	3	100

c) M. Tech Project Part - I

Sl. No	Subject code	Subject Name	Total load (h)	Credit	Marks
1	MM5291	M. Tech thesis Part - I (Term Paper)	8	4	200
2	MM5292	Term Paper Seminar & Viva-voce		2	100

THIRD SEMESTER

Sl. No	Paper	Credit
1	M. Tech Thesis Part - II (Progress Report)	12
2	Progress Report Seminar & Viva-voce	6
	Total Credit	18

Note:

1. For M. Tech Thesis Part - II (Progress Report), the student will submit the details of work done for the M. tech Thesis during the third semester, and findings (if any). Submission will be followed by a seminar and viva-voce.

M. Tech Project Part - II

Sl. No	Subject code	Subject Name	Total load (h)	Credit	Marks
1	MM6191	M. Tech Thesis Part - II (Progress Report)	24	12	300
2	MM6192	Progress Report Seminar & Viva-voce		6	100

FOURTH SEMESTER

Sl. No	Paper	Credit
1	M. Tech Final thesis	22
2	Thesis Seminar & Viva-voce	8
	Total Credit	30

Note:

1. For M. Tech Final thesis, the student will compile the entire work done for the M. Tech Project, along with the findings, in the form of a Thesis and submit at the end of the semester. Thesis submission will be followed by a Thesis seminar and viva-voce.

M. Tech Project Part - III

Sl. No	Subject code	Subject Name	Total load (h)	Credit	Marks
1	MM6291	M. Tech Final thesis	30	22	400
2	MM6292	Thesis Seminar& Viva-voce		8	200

Total Credit: 21 + 21 + 18 + 30 = 90

Note on Subject Code:

XX: Department Code (AE, CE, ME, etc.); YY: Year(Y)-Semester(Y) (51, 52, 61, 62, etc.); ZZ: Subject Code (01 to 49 for Theory subjects, 50-99 for practical subjects. Example: AE5124 [Aerospace Engineering, Fifth Year (PG), First Semester, 24 subject code)

Course		Course		Course	-	L	Т	Р
Code	MM5101	Name	Materials Technology	Category	Core	3	0	0
Course Offering Department		Metallu	rgy and Materials Engineering	Pre-rea	uisite Courses		NI	L

Module	Syllabus	Duration (h)			
Module-I	Classification of engineering materials; Elements of crystallography, Bravais lattice & Miller indices, Atomic packing; Crystal imperfections	06			
Module-II	Phase rule, Types and construction of phase diagrams, Free energy-composition diagrams, Lever Rule, Introduction to ternary system				
Module - III	Fe-C system, steel and cast iron microstructures with phase relations	06			
Module -1V	<i>Solidification</i> : Homogeneous & Heterogeneous nucleation, Growth; Dendritic solidification; Segregation	06			
Module-V	<i>Diffusion:</i> Diffusion laws, Kirkendall effect, activation energy, uphill diffusion <i>etc.</i>	04			
Module -VI	<i>Solid-state phase transformation:</i> Nucleation and Growth kinetics, T-T-T and C-C-T diagrams	02			
Module - VII	<i>Diffusional and diffusion less phase transformation processes:</i> polymorphic transformation, pearlite, bainite and martensite transformations, massive transformation, order-disorder transformation, precipitation, recrystallization				
	Total contact hours	40			

	Materials Science and Engineering: W.F. Smith, J. Hashemi and R Prakash, McGraw Hill
Learning	The Science and Engineering of Materials, D.R. Asheland, Springer Science
Resources	Fundamentals of Materials Science and Engineering : W.D. Callister, Jr, John Wiley & Sons, Inc.
	Science and Engineering - A First Course, V. Raghavan, PHI

Course	MM5102	Course	Advanced Characterization of	Course	Com	L	Т	Р
Code	MM5102	Name	Materials	Category	Core	3	0	0
Course Offering		Metallu	rgy and Materials Engineering	Pre-ree	-requisite Courses		NI	I
Department		Metallu	igy and Materials Engineering	110-100	<i>quisite</i> cours	03	111	L

Module	Syllabus	Duration (h)
Module-I	Introduction to Advanced material characterization techniques	01
Module-II	x-ray diffraction pattern analysis: Determination of crystal structure, crystal size, lattice parameter, quantitative phase analysis and defect analysis.	08
Module - III	Advanced optical Microscopy: Interference, Phase contrast, polarized light and near field scanning optical microscopy	04
Module -1V	Electron Microscopes: Scanning Electron Microscopes and Transmission Electron microscopes, Electron diffraction and diffraction pattern analysis	10
Module-V	Scanning probe Microscope : Scanning tunneling microscope,Atomic force microscope, Magnetic force microscope	05
Module VI	Spectroscopy: Principle and application of Energy dispersive spectroscopy, Auger electron spectroscopy, X ray photo electron spectroscopy, x-ray fluorescence spectroscopy, Raman spectroscopy. Fourirer transform Infrared spectroscopy	
Module-VII	Thermal Characterization techniques: DSC, DTA-TGA, principles and applications	04
	Total contact hours	40

	B.D Cullity: Elements of x- ray diffraction
Learning Resources	Yang Leng: Materials Characterization: Introduction to Microscopic and Spectroscopic Methods
	David B Williams, C. Barry Carter: Transmission Electron Microscopy

Course		Course	Advanced Thermodynamics and	Course	6	L	Т	Р
Code	MM5103	Name	Kinetics	Category	Core	3	0	0
Course Offering Department		Metallu	rgy and Materials Engineering	Pre-rea	requisite Courses		NI	L

Module	Syllabus	Duration (h)
Module-I	Basics of statistical thermodynamics and derivation of thermodynamics quantities	05
Module-II	Laws of thermodynamics, activity, equilibrium constant, application to metallurgical systems.	08
Module-III	Thermodynamics of solutions and phase equilibria.	10
Module-IV	Thermodynamics of electrochemical cells and degradation phenomena.	04
Module-V	Thermodynamics of surfaces, interphases and defects.	04
Module-VI	Basic kinetic laws, rate constants and rate limiting steps.	04
Module-VII	Experimental and theoretical techniques in thermodynamics of materials.	05
	Total contact hours	40

	Statistical mechanics: A survival guide, A. M. Glazer and J. S. Wark, Oxford University Press.
Learning	Textbook of Materials and Metallurgical Thermodynamics, Ahindra Ghosh, PHI Eastern Economy edition.
Resources	Introduction to the Thermodynamics of Materials, David R. Gaskell, Taylor and Francis.
	A Textbook of Metallurgical Kinetics, Sudipto Ghosh and Ahindra Ghosh, PHI Eastern Economy edition.

Г

Course		Course	Surface	Treatm	ent and	Course	Departmental	L	Т	Р
Code	MM5121		Modifica			Category	Elective	3	0	0
Course Offering		Metallu	irgy	and	Materials	Dro-r	naujeita Coursos		NI	T
Department		Engine	ering			Pre-requisite Courses			111	L

Module	Syllabus	Duration (h)
Module-I	Introduction	04
	Conventional Surface Engineering, Types of Surface Modifications, Physical Modifications, Chemical Modifications, Applications of Surface Engineering towards Nanomaterials, Structure, Defects in solids, Bonds and Bands in Materials, Thermodynamics of Materials, Kinetics, Nucleation	
Module-II	Vacuum Science and Technology	06
	Kinetic Theory of Gases, Gas Transport and Pumping, Vacuum Technology	
Module -111	Thin-film Evaporation Processes	10
	Physics and Chemistry of Evaporation, Film Thickness Uniformity, Evaporation Processes and Applications	
Module-IV	Discharges, Plasma, and Ion-Surface Interactions	05
	Plasma Discharges and Arcs, Fundamentals of Plasma Physics, Reactions in Plasmas, Physics of Sputtering, Ion bombardment modification of growing films	
Module-V	Chemical Vapor Deposition	05
	Reaction types, Thermodynamics of CVD, Gas transport, Film growth kinetics, Thermal CVD, Plasma-enhanced CVD	
Module-VI	Substrate Surface and Thin-film Nucleation	08
	Atomic view of substrate surface, Thermodynamic aspects of nucleation, Kinetic processes in nucleation and growth	
	Total contact hours	38

Learning Resources	Materials Science of Thin Films by Milton Ohring

Course	urse		e Mechanical Behaviour of			<i>Course</i> Departmental		L	Т	Р
Code	MM5122					Category	Elective	3	0	0
Course Offering		Metallurgy and Material		Materials	Dra naquisita Courses			NT	T	
		Engineering			Pre-requisite Courses			NI	L	

Module	Syllabus	Duration (h)
Module-I	Introduction to thin films	1
Module-II	Description of common thin film deposition techniques;	6
Module-III	Film stress and substrate curvature; Stress in anisotropic and patterned films	10
Module- IV	Delamination and fracture; Film buckling bulging and peeling	10
Module-V	Dislocation interactions and strain relaxation	10
Module-VI	Mechanical testing of thin films, including nanoindentation.	5
	Total contact hours	42

Learning	M. Ohring, "Materials Science of Thin Films" Academic Press, Second Edition.	
Learning Resources	L.B. Freund, and S. Suresh, " Thin film materials: stress, defect formation and surface evolution ", Cambridge University Press.	

Course Code	MM5123		Advanced Making	Iron	and	Steel	Course Category	Departmental Elective	L 3	Т 0	P 0
Course Offering M Department E		Metallu Engine	00	nd	Mat	erials	Pre-re	equisite Courses		NI	L

Module	Syllabus	Duration (h)
Module-I	Up gradation of raw materials: Washing of Ore & Coal; Advances in Agglomeration of Iron Ores – process control and current innovations. Characteristics of suitable Raw Materials.	03
Module-II	Blast furnace (BF) Iron Making- Design Features of BF and supporting units, viz. Coke Ovens, Stoves, Gas Cleaning Systems. Recent Trends in Iron Making; Gas – Solid and Slag Metal Reactions; Sponge Iron Making.	
Module-III	Reduction Mechanism and Equilibrium in Carbon-Oxygen System; Slag formation - Chemistry and Characteristics; Reserve Zones, Cohesive Zone and their Importance.	05
Module- IV	Modern trends to Minimize Coke Rate and Emissions; Injection techniques; Blast furnace (BF) Irregularities and Remedies. Treatment of Slag and Outgoing Gas.	04
Module-V	Alternate routes of Iron making - Direct reduced iron (DRI); Gas based and Coal-Based DRI; Hot Briquetted Iron (HBI); Problems and prospects of DRI in India.	04
Module-VI	Steel making: Principles of Refining, Steel making in Basic Oxygen Blown Converters, Kinetics of Reactions and Lance Design.	04
Module-VII	Arc furnace Steel Making - Production of Alloy Steels; Induction Furnace Steel Making: Use of DRI in Steel Making.	03
Module-VIII	Secondary Steel Making - Quality, Continuous Steel Making; Continuous Casting; Vacuum Degassing and Electro Slag Re-melting de-oxidation and de-sulphurization; Vacuum techniques – Re-melting and Refining; Injection Metallurgy.	
Module-IX	Inclusion removal and its modification. Casting of ingots and Continuous Casting. Defects and Remedies.	04
Module-X	Energy and Environmental aspects in Steel Making, concept of Zero CO ₂ Emission.	02
Module-XI	Latest Developments in Iron and Steel Making Processes.	04
	Total contact hours	42

	An Introduction to Modern Iron Making - R. H. Tupkary
Learning	An Introduction to Modern Steel Making - R. H. Tupkary
Resources	Principles of Blast Furnace Ironmaking: Theory and Practice - A. K. Biswas
	Ironmking and Steelmaking: Theory and Practice - Ahindra Ghosh and Amit Chatterjee

Course		Course	Crystallographic	Texture of	Course	Departmental	L	Т	Р
Code	MM5124		Materials		Category	Elective	3	0	0
Course Offering		Metallu	rgy and	Materials	Duo u	equisite Courses		NI	T
Department		Engine	ering		FIE-I	equisite courses		INI	L

Module	Syllabus	Duration (h)
Module-I	<i>Introduction:</i> Crystallography, Microstructure and Texture, Description of Grain Orientation and Texture, Development of Texture During Processing, Macro- and Microtexture & Industrial Importance of Texture	
Module-II	Representation of Texture: Stereographic Projection , Pole Figure .and Orientation Distribution Function (ODF) Method, Description of an Orientation,	4
Module-III	 Experimental Determination of Texture: Macrotexture Measurement by X-ray Diffraction and using Synchrotron X-rays Microtexture Measurement Techniques: Scanning Electron Microscopy-Based Electron Backscattered Diffraction (SEM-EBSD) & Transmission Electron Microscopy-Based Orientation Imaging Microscopy (TEM-OIM) 	6
Module- IV	Deformation texture (BCC, FCC& HCP Metals and alloys), Recrystallisation texture, Transformation Texture, Theories of Formation of Recrystallization Textures	5
Module-V	Texture Evolution in Thin Films: Representation of Texture in Thin Films, Texture Measurement in Thin Films, Mechanism of Texture Formation in Thin Films Texture Developed During Various Methods of Film Deposition	5
Module-VI	<i>Textures of Non-metals:</i> Textures in Ceramics, Alumina, Zirconia, High Tc Superconductors, Texture in Geological Materials.	4
Module-VII	Texture and Properties: Texture Dependence of Mechanical and other Properties: Elastic Modulus, Yield Stress,r-Value, Fracture, Magnetic and Electrical properties, Corrosion and oxidation Oxidation	
Module-VIII	Texture Control in Some Engineering Materials Texture Control in Cold-Rolled and Annealed Low-Carbon and Intestinal free steels Sheet Steels, Grain-Oriented Silicon Steels, Non-oriented Silicon Steels, Aluminum and Aluminum Alloys, Ni and Ni Alloys and Texture Control in the Coatings of Industrial Galvannealed Steels	8
	Total contact hours	40

	Serope Kalpakjian, " Manufacturing Engineering and Technology ", Fourth Edition, Addison-Wesley Publishing Co., Boston, 2014.
	Mikell P. Groover, "Principles of Modern Manufacturing SI Version", Wiley India, 2018.
	ParasuramanSwaminathan, "Semiconductor Materials, Devices and Fabrication", Wiley India, 2017.
Loguning	Madou.M.J, "Fundamentals of micro fabrication: The Science of Miniaturization , Second Edition", CRC Press, USA, 2002.
Learning Resources	C. S. Lim, K. F. Leong, C. K. Chua, "Rapid Prototyping: Principles and Applications" (3rd Edition), World Scientific Publishing Company, 2009.
	P. D. Hilton, P.F. Jacobs, " Rapid Tooling: Technologies and Industrial Applications ", ist Ed., Marcel Dekker, Inc., 2010.
	Steinar WesthrinKilli, "Additive Manufacturing: Design, Methods, and Processes", Pan Stanford Pub., 2017.
	T. DebRoy et al., Review Article – "Additive manufacturing of metallic components – Process, structure and properties", Progress in Materials Science, Volume 92 (2018), 112-224.

Course		Course	Mechanical Behavio	ur of	Course	Open	L	Т	Р
Code	MM5161		Engineering Materials		Category	Elective	3	0	0
Course Offering Department		Metallu	rgy and Materials Engin	eering	Pre-ree	quisite Course	S	NI	L

Module	Syllabus	Duration (h)
	Introduction to deformation and failure	
Module-I	Concept of stresses and strains; Engineering and true stresses and strains; Different types of loading and temperatures encountered in engineering applications; Mechanical behaviour and failure of of metals, alloys, ceramics, polymer and composites materials	08
	Elastic deformation	
Module-II	State of stress and strain; Principal stress and strain; elastic stress-strain relation; Elastic behaviour of engineering materials	06
	Plastic deformation	
Module-III	Hydrostatic and deviatoric stress; Octahedral stress; Effective stress and strain; Yield criteria; Mohr circle; Plastic stress-strain relation;	06
	Mechanisms of plastic deformation	
Module- IV	Crystal defects; Dislocation; Geometrical and statistical dislocations; Dislocation multiplication; Dislocation reactions; Slip and twinning; Critical resolved shear stress; Strain hardening; Hall-Petch relationship	10
	Fracture	
Module-V	Fracture in engineering materials; Modes and mechanisms of fractures; Linear elastic fracture mechanisms; Elastic-plastic fracture mechanisms; Measurement of fracture toughness	00
	Fatigue	
Module-VI	Types of dynamic loading; S-N curves; Classification of fatigue; Fatigue of engineering materials; Mechanisms of fatigue failure; Fatigue life prediction	06
	Creep	
Module-VII	Time dependent deformation; Different stages of creep; Creep and stress rupture; Creep mechanisms and maps; Design of materials for high temperature applications	06
	Total contact hours	42

	Deformation and Fracture Mechanics of Engineering Materials : R.W. Hertzberg, John Wiley and Sons
	Mechanical Metallurgy, G.E. Dieter, McGraw-Hill
Learning	Mechanical Behavior of Materials: M.A. Meyers, K K. Chawla, Cambridge Press
Resources	Fatigue of Materials: S. Suresh, Cambridge Univ. Press
	Mechanical Behavior of Materials: N. E. Dowling, Prentice-Hall.
	Fracture Mechanics: Fundamentals and Applications: T.L. Anderson, CRC Press

Course		Course	Multiscale Modelling	Course	Open	L	Т	Р
Code	MM5162	Name	0	Category	Elective	3	0	0
Course Departm	Offering ent	Metallu	rgy and Materials Engineering	Pre-rec	quisite Cours	es	NI	L

Module	Syllabus	Duration (h)
Module-I	Mathematical description of physical phenomena-basics of partial differential equations, statistical techniques and numerical analysis.	10
Module-II	Paradigms of simulations-analytical, physical and data-driven.	03
Module-III	Coupling in multiscale modelling	02
Module-IV	Coarse-graining strategies.	04
Module-V	Uncertainty quantification in multiscale modelling-traditional and Bayesian approaches	10
Module-VI	Case-studies(representativeexamples,anyonecanbechosen):1. Integrated Computational Materials Engineering of plasticity in materials.2. Multiscale modelling of biological processes (e.g., protein folding)	10
Module-VII	Advanced algorithms in multiscale simulation	01
	Total contact hours	40

	Multiscale materials modelling: Fundamentals and applications, Z. Xiao Guo, CRC press.
Learning Resources	Multiscale Modelling: A Bayesian Perspective, Springer.
nesources	Integrated Computational Materials Engineering (ICME) for Metals: Using multiscale modelling to invigorate engineering design with science, M.E. Horstemeyer, Wiley.

Course		Course		Course	Open	L	Т	Р
Code	MM5163	Name	Microstructure Modelling	Category	Elective	3	0	0
Course Offering Department		Metallu	rgy and Materials Engineering	Pre-rec	quisite Cours	es	NI	L

Module	Syllabus	Duration (h)				
Module-I	Thermodynamics of Phase Transformation: Solution thermodynamics, Introduction to CALPHAD thermodynamic modelling, Irreversible Thermodynamics					
Module-II	<i>e-II</i> Modeling of precipitation: Nucleation, Diffusion controlled growth, Sharp interface theory, Interface controlled growth, JMAK kinetics, Application in Multiparticle precipitation kinetics.					
Module - III	Monte Carlo Potts Model: Hamiltoninan and dynamics, Ising model, Q-state Potts Model, Application in Grain growth and Recrystallisation	6				
Module -1V	Phase-field Model: Concept of diffuse interface, Allen-Cahn equation, Multiphase-field model, Diffusion coupled phase-field model, Application in Solidification, Cahn-Hilliard Model for Phase Separation.					
Module-V						
	Total contact hours	40				

Learning	Computational Materials Engineering by Koenraad G. F. Janssens, Dierk Raabe, Ernst Kozeschnik, Mark A Miodownik, Britta Nestler; Elsevier.
Learning Resources	Continuum Scale Simulation of Engineering Materials by Dierk Raabe, Franz Roters, Frederic Barlat, Long-Qing Chen; Wiley-VCH. Methods.

Course		Course		Course	Laboratory	L	Т	Р
Code	MM5171	Name	Materials Technology Lab.	Category	5	0	0	2
Course Offering Department		Metallu	rgy and Materials Engineering	Requ	isite Courses		ммо	901

Module	Syllabus	Duration (h)
Lab. I	Metallographic Sample preparation -I: Sectioning, Mounting, Grinding, Polishing,	03
Lab. I	Metallographic Sample preparation -II: Fine polishing, Electropolishig, Etching	03
Lab. III	Optical Microscope and micrstructural characterization	03
Lab. IV	Microstructure of ferrous materials	03
Lab. V	Microstructures of non-ferrous materials	03
Lab. VI	Image Analyses	03
Lab. VII	Bulk Hardness Testing I	03
Lab. VIII	Bulk Hardness Testing II	03
Lab. IX	Microhardness Testing	03
Lab. X	Impact Testing	03
Lab. XI	Tensile Testing	03
	Total contact hours	33

Learning Resources	Metallographic Specimen Preparation: Optical and Electron Microscopy ,J. L. McCall, Springer
	Metallography Principles and Practice: G. F. Vander Voort, ASM International
	Testing of Metallic Materials: A. V. K. Suryanarayana, PHI Pub.

Course		Course	Advanced Characterization of	Course	Laboratorv	L	Т	Р
Code	MM5172	Name	Materials laboratory	Category	Ш	0	0	2
Course Offering Metallurgy and Materials Engineering		Requisite Courses			ММО	902		

Module	Syllabus	Duration (h)
Lab. I & II	X-ray diffraction pattern analysis: Crystal structure, size and precise lattice parameter determination.	06
Lab. III & IV	Optical microscopy: Sample preparation and microstructural characterization.	09
Lab. V & VI	Electron Microscopes: Scanning Electron Microscopes and Transmission Electron microscopes, Image and diffraction pattern analysis	06
Lab. VII & VIII	Scanning probe Microscope: Scanning tunnelling microscope, Atomic force microscope, Magnetic force microscope demonstration	09
Lab. IX & X	Thermal Characterization techniques: DSC, DTA-TGA demonstration and analysis	06
	Total contact hours	30

	B.D Cullity: Elements of x- ray diffraction
Learning	Yang Leng: Materials Characterization: Introduction to Microscopic and Spectroscopic Methods
Resources	David B Williams, C. Barry Carter, Transmission Electron Microscopy

Course	MM5173	Course	Mini Project on Materials	Course	Laboratory	L	Т	Р
Code		Name	Technology	Category	II	O	0	3
		Metallurgy and Materials Engineering		0 0			NI	L

Module	Syllabus	Duration (h)
	Course structure to be decided by the concerned faculty member on the basis of the topic selected by the student.	
	Total contact hours	30

Course		Course	Mini Project on Advanced	Course	Laboratory	L	Т	Р
Code	MM5174	Name	Characterization of Materials	Category	5	0	0	3
Course Offering Metallurgy and Materials Engineering		Real	isite Courses		NI	L		
Department				noqu				

Module	Syllabus	Duration (h)
	Course structure to be decided by the concerned faculty member on the basis of the topic selected by the student.	
	Total contact hours	30

Course		Course	Mini Project on Advanced	Course	Laboratory	L	Т	Р
Code	MM5175	Name	Thermodynamics and Kinetics	Category	5	0	0	3
Course Offering		Metallurgy and Materials Engineering		Requisite Courses			NIL	
Department		Metallu	Metanurgy and Materials Engineering		Requisite Courses		NIL	

Module	Syllabus	Duration (h)
	Course structure to be decided by the concerned faculty member on the basis of the topic selected by the student.	
	Total contact hours	30

Course		Course		Course	0	L	Т	Р
Code	MM5201	Name	Manufacturing Processes	Category	Core	3	0	0
Course Offering Department		Metallurgy and Materials Engineering		Pre-requisite Courses			NIL	

Module	Syllabus	Duration (h)						
	Introduction to manufacturing processes							
Module-I	Product design process; Computer-aided design; Selection of materials and manufacturing							
mouule 1	processes; Interrelation amongst chemistry-processing-property-performance; Computer							
	Integrated Manufacturing; Quality assurance; Total Quality Management; Green manufacturing							
	Metal Casting Processes	05						
Module-II	Fundamental of metal casting; Cast structure; Casting processes; Sand casting; Permanent mold	05						
	casting; Rapid solidification; Casting defects							
	Forming and Shaping Processes Fundamental of metal forming; Hot, warm and cold working; Forming and shaping practices							
Module-III								
	forging, rolling, extrusion, wire drawing, sheet metal forming; Equipments; Die materials and							
	design; Defects; Residual stresses; Economics of forming							
Modulo IV	Machining Processes							
Module-IV	Mechanics of cutting; Chip formation; Cutting force and power; Turning process; Laths and their	04						
	operations; Tool materials; Tool wear and failure; Tool life; Machinability							
	Joining Processes							
Module-V	Fundamental of joining; Classification of joining; Fusion welding - Oxyfuel Gas welding, Arc Welding, TIG, MIG; Solid-state joining- Diffusion bonding, Friction stir welding, Resistance							
	welding; Weldibilty; Carbon equivalent; Inspection, quality control and testing;							
	Processing of non-metals							
	Glass working: Raw materials, melting, shaping, heat treatment and finishing							
	Plastic shaping: Extrusion, production of sheet and film, production of fiber and filament,							
Module-VI	coating processes, injection molding, polymer foam processing and forming	06						
module vi	Rubber processing: Rubber processing and shaping, manufacturing of tires and other rubber							
	products							
	Case studies							
	Non-equilibrium processing							
	Thermodynamics and kinetics of metastable phase formation							
	Rapid solidification: methods; constitution and microstructure formation; properties,							
	performance and applications of rapidly solidified materials							
	Mechanical alloying: Process; mechanism; consolidation; synthesis of non-equilibrium							
Module-VII	phases; applications	08						
	Chemical Vapor Deposition: Gas-phase transport and reactivity; Solid phase formation;							
	applications							
	Physical Vapor Deposition: Deposition methods; Influence of energy on coating, Applications,							
	future trends							
	Case studies							
	Processing of Integrated Circuit							
	Clean room and Process sequence							
	Silicon processing: raw material; MGS to EGS conversion; Crystal growth, cleaning							
	Lithography: Photolithography and other lithography techniques	0.5						
Module-VIII	Oxidation: Thermal oxidation, kinetics of oxidation, different types of oxidation	06						
	Doping: Diffusion, Ionimplantation							
	Metallization							
	Testing and packaging							
	Case studies Total contact hours	40						
	Total contact hours	40						

	Manufacturing Engineering and Technology, S Kalpakjian and S Schmid, 7th Ed., Pearson
Logming	Fundamentals of Modern Manufacturing, Mikell P. Groover
Learning Resources	Materials and Processes in Manufacturing, DeGarmo, Black, and Kohser, Wiley & Sons, Inc,
	Non-equilibrium processing of materials, C. Suryanarayana
	Device Electronics for Integrated Circuit, R. S. Muller, T. I. Kamins and M. Cha

Course	Course			Course		L	Т	Р
Code	MM5202	Name	Design and Selection of Materials	Category	Core	3	0	0
Course Offering Met			rgy and Materials Engineering	Pre-ree	quisite Cours	es	NI	L

Module	Syllabus	Duration (h)						
Module-I	Relationship between processing-structure-properties of various engineering materials	04						
Module-II	Materials selection criteria-shape, micro structural factors, performance criteria in service and other strategic requirements of engineering components to be designed. Economic considerations							
Module-III	Technologically important material properties: physical, mechanical, chemical, thermal, optical and electrical properties							
Module-IV	Materials used in important engineering sectors							
Module-V	Types of design, materials data and design tools							
Module-VI	Methodology for selection of materials for the components, selection of processes to meet the design requirements	05						
Module-VII	Systematic selection process-pertinent case studies, Multiple constraints; its handling strategies	04						
	Total contact hours	40						

	Engineering Design: A materials and processing approach: George E Dieter. McGraw-Hill Pub.
	Materials & Design: Michael Ashby and Kara Johnson. Elsevier Pub.
Learning	Materials and Process Selection for Engineering Design: Mahmoud M. Farag. CRC Press Pub.
Resources	Materials Selection and Design, Md AbdulMaleque and MohdSapuanSalit, Springer.
	Selection and Use of Engineering Materials : F A A Crane, J A CharlesJ. Furness. Butterworth-Heinemann Pub.

Course		Course	Course			L	Т	Р
Code	MM5203	Name	Defects in Materials	Category	Core	3	0	0
Course Departm	Offering ent	Metallu	rgy and Materials Engineering	Pre-req	uisite Cours	es	NI	L

Module	Syllabus	Duration (h)
Module-I	Point defects: Thermodynamics of vacancy,, Effect of radiation on vacancy, Frenkel defect, Schottky defect, Holes in semiconductors, Role of defects in conductivity; Antisite defects, Vacancy diffusion, Interstitial diffusion, Interstitialcy diffusion.	
Module-II	Line defects: Types of dislocations, Burger circuit, Deformation by slip, Glide and Climb of dislocation, Mixed dislocation, Interaction between dislocations, Cottrell atmosphere, Dislocations in nonmetallic crystals	
Module - III	Surface defects: Grain-boundary, Low angle boundary (Tilt and Twist), High angle boundary, Coincident site lattice, Thermally activated migration of boundary, Diffusion through grain-boundary; Stacking fault and partial dislocation; Twin boundaries; Free surface, Wulff plot for equilibrium shape; Antiphase boundaries, Domains in ferroic Materials.	
Module -1V	Volume defects: Voids and inclusion; Effect on the material properties	2
	Total contact hours	40

Learning	Defects in Solids by Richard J. D. Tilley, Wiley Publishing House.
Resources	Physical Metallurgy by R.W.Cahn and Peter Hassen, North Holland Publisher.

	MM5221		Surface Degradation and	Course Category	Departmental/ Specialisation Elective	L	Т	Р		
Course Code		Course Name				3	0	0		
Course Offering		Metallu	rgy	and	Materials	s Pre-requisite Courses			MMO	904
Department		Enginee	ering			IIC	requisite courses		Minio	<i>,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Module	Syllabus	Duration (h)
Module-I	An introduction: Technical and economic aspect of the study of surface degradation.	2
Module-II	Electrochemical principles of corrosion cell; exchange current density; electrode potential and standard cells, EMF series and galvanic series— their applications, application of Faraday's law in corrosion.	
Module-III	Thermodynamics of corrosion: Pourbaix diagram constriction and application, Polarization: types, factors involved, effect on degradation rate; Passivation: factor involved, effect on degradation rate	
Module-IV	Mixed Potential theory; Tafel equation, construction and interpretation of Polarization diagrams.	6
Module-V	Different forms of degradation -uniform attack, galvanic, crevice, pitting, intergranular, selective leaching, erosion corrosion and stress corrosion cracking, Hydrogen effect, corrosion fatigue and microbes induced corrosion. Liquid metal embrittlement-their characteristic features, causes and remedial measures. Surfce degradation testing methods and interpretation of results.	8
Module-VI	High temperature surface degradation — Mechanism to formation films on the surface, Ellingham diagrams, Pilling-Bedworth ratio, and their effects on kinetics, oxide defect structures, rate laws, types of oxidation, materials for use at elevated temperatures.	6
Module-VII	Degradation by wear of materials; its characteristics, wear testing and measurement, Wear-resistant materials	3
Module-VII	Preventive measurement of surface degradation: material selection and design aspects; control of environment including inhibitors, cathodic and anodic protection, coatings and other surface protection techniques of metals and alloys.	
	Total contact hours	40

	Corrosion Engineering, 3rd Ed., Mars G. Fontana, McGraw-Hill, Singapore.
Learning Resources	Corrosion and its Control, 3rd Ed., H.H. Uhlig and R.W. Revie, John Wiley, Singapore.
	Stress corrosion cracking : Theory and Practice, V S Raja and T Shoji (eds), Woodhaed Publishing Limited, Oxford.
	Corrosion Failures: Theory, Case Studies and Solutions , K.E. Perumal and V.S. Raja; John Wiley & Sons, USA 2
	A.S. Khanna, Introduction to High Temperature Oxidation and Corrosion , ASM International, Materials Park, Ohio

Course	MM5222	Course			Course	Departmental/	L	Т	Р	
Code		Name	Engineering Tribology	Tribology	Category	Specialisation Elective	3	0	0	
Course	Offering	Metallu	rgy	and	Materials	Dro	requisite Courses		NI	1
Department Engin			ering			FIE	requisite courses		INI	L

Module	Syllabus	Duration (h)
Module-I	Introduction to Tribology: Structure of surfaces, Surface topography, Chemical and physical state of the solid surface; Surface Engineering for tribology	04
Module-II	Fundamental of contact between solid surfaces	04
Module-III	Friction and its measurement	04
Module- IV	Wear and its measurement: Classification of wear; Adhesive, Abrasive, Erosive, Cavitation, Corrosive, Oxidative, Fatigue and Fretting Wear	08
Module-V	Wear of alloys, polymers and ceramic; Mechanisms of wear; Wear Maps	04
Module-VI	Lubricant: Classification of lubricants, Physical properties of lubricants, Lubricants and their composition, Viscosity and its measurements	04
Module-VII	Hydrodynamic Lubrication: Frictional force, power loss, mechanism of pressure development, Reynold's equation, Navier-Stokes equation, Coefficient of friction	04
Module-VIII	Hydrostatic Lubrication: Hydrostatic step bearings, load carrying capacity, Oil flow through the hydrostatic step bearing	04
Module-IX	Tribology in practice: Material selection, Improved design and surface engineering;	04
Module-X	Design of (any one)- Cutting tool, Low friction surface, Seal	02
Module-XI	Bio-tribology and Nano-tribology	02
	Total contact hours	44

	Engineering Tribology: G. Stachowiak and A. Batchelor, Butterworth-Heinemann
Learning	Introduction to Tribology: B. Bhushan, John Wiley & Sons
Resources	Fundamentals of Tribology: R. Gohar and H. Rahnejat, World Scientific
	Friction, Wear, Lubrication: K.C. Ludema and L. Ajayi, CRC Press

							Dementer entel/	L	Т	Р
Course Code	MM5223	Course Name				Course Category Departmental/ Specialisation Elective		3	0	0
Course Offering Department		Metallu Enginee	00	and	Materials	Pre-requisite Courses		MM0	906	

Module	Syllabus	Duration (h)
Module-I	The iron-carbon equilibrium diagram and plain carbon steels: The iron-	05
	carbon equilibrium diagram. The austenite-ferrite transformation. The austenite-	
	cementite transformation. The kinetics of the $\gamma \rightarrow \alpha$ transformation. The austenite-	
	pearlite reaction. Ferrite-pearlite steels.	
Module-II	The effects of alloying elements on iron–carbon alloys: γ - and α -phase fields,	03
	distribution of alloying elements in steels, effect of alloying elements on the kinetics	
	of the γ/α transformation, structural changes resulting from alloying additions, transformation diagrams for alloy steels.	
Module-III	Martensitic transformation: General characteristics & crystal structure of	05
mouule-III	martensite, crystallography of martensitic transformations, morphology of ferrous	05
	martensites, kinetics of transformation to martensite, strength of martensite, shape	
	memory effect & tempering of martensite.	
Module- IV	The bainite reaction: Introduction, Upper bainite, Lower bainite, The shape	05
	change, role of carbon in bainite, Kinetics, transition from upper to lower bainite,	
	Atomic mechanism of bainitic transformation, Granular bainite, Tempering of	
	bainite, Role of alloying elements, Use of bainitic steels, Nanostructured bainite &	
	Acicular ferrite.	
Module-V	Low carbon steels: Batch annealing and continuously annealed formable DD, EDD,	05
	IF steels, Precipitation hardened microalloyed steels, Multiphase steels, Advanced	
	high strength steels: Dual-phase steels, TRIP-assisted steels, TWIP steels.	
Module-VI	Thermo-mechanical treatment of steels: Introduction, Controlled rolling of low-	03
NA 1 1 1711	alloy steels, Industrial steels subjected to thermo-mechanical treatments.	0.4
Module-VII	Structural C-Mn steels: Weathering steels, Ship Building steels, Line pipe steels & Pressure vessel steels.	04
Module-VIII	Stainless steels : Austenitic stainless steels, The iron-chromium-nickel system,	06
11000010 1111	Chromium carbide in Cr–Ni austenitic steels Intermetallic precipitation in	00
	austenite, Austenitic steels in practical applications, Duplex and ferritic stainless	
	steels, Mechanically alloyed stainless steels & the transformation of metastable	
	austenite.	
Module-IX	Specialty steels: Electrical steels (GO & NGO), Rail steels, Maraging steels & High-	07
	Speed tool steels.	
Module-X	Cast iron: Nucleation and growth of graphite in cast iron. Alloying of cast iron.	07
	Emerging alloy cast iron of varying morphology of graphite. Effect of	
	microstructure on the properties of alloy cast iron.	
	Total contact hours	45

	Physical Metallurgy of Steels - W. C. Leslie
Learning	Physical Metallurgy and the Design of Steels - F. B. Pickering
Resources	Steels: Microstructure and Properties - H. K. D. H. Bhadeshia and R. W. K. Honeycombe
	Cast Iron Technology - Roy Elliott

Course		5224	Course	Course Departmental/		Т	Р			
Course Code	MM5224		, U			Course Category	Specialisation Elective	3	0	0
Course	Offering	Metallu	rgy	and	Materials	Dro-r	equisite Courses		NL	T
Department		Enginee	ering			Pre-requisite Courses			111	L

Module	Syllabus	Duration (h)
	Introduction to advanced joining techniques of similar and dissimilar materials	2
Module-I	Explosive Welding and Adhesive Bonding: theory and Key Variables, Parameters, Weld Quality, Equipment and Tooling, Advantages, Limitations and Applications,	4
Module-II	Electron Beam Welding- Background of the Process, Guns, Weld Environment, Welding in Different Degrees of Vacuum, Equipment and Applications, Laser Beam Welding, Physics of Lasers, Types of Lasers, Process Parameters, Applications and Limitations.	6
Module-III	Plasma arc welding: Plasma Arc Welding- theory and Principles, Transferred arc and Non-Transferred arc Techniques, Equipment, Joint Design Advantages, Disadvantages, and Applications, Magnetically impelled arc butt (MIAB) welding, Under Water Welding- Wet and Dry Under Water Welding	6
Module-IV	Vacuum brazing- Theory, Mechanisms and Key Variables, Equipment, Stop-Off and Parting Agents, Advantages, Limitations and Applications.	6
Module-V	Ultrasonic welding-Principles of operation, Process Characteristics and Applications,	2
Module-VI	Diffusion Welding- theory and Principle of Process, Key Variables, Intermediate Materials, Deformation Welding, Equipment, Advantages, Limitations, Materials, Applications, Cold Pressure Welding- Process, Equipment and Setup, Applications	8
Module-VII	 Friction Welding- Basic Principles, Process Variants, Different Stages of Friction Welding, Mechanism of Bonding, Influence of Process Parameters, Weld Quality and Process Control, Joining of Dissimilar Materials, Advantages, Limitations and Applications, Friction Stir Welding-Metal flow phenomena, tools, process variables and applications, Friction Stir Processing- Process, Application 	8
	Total contact hours	42

	Welding Engineers Hand Book- ASHE Vol. I, II, III and IV.
Learning	Parmar R.S., Welding Processes and Technology, Khanna Publishers, Delhi
Resources	Rossi, Welding Engineering , McGraw Hill.
nesources	Schwartz M.M., Metals Joining Manual, McGraw-Hill Inc.
	Udin et al., Welding for Engineers , John Wiley & Sons.

Course	Course Code MM5261		Nanostructures nanomataerials		and	Course		L	Т	Р
						Category	Open Elective	3	0	0
Course Offering		Metallu	rgy	and	Materials	Dro requisite Courses			NI	T
Departm	ent	Engine	ering			Pre-requisite Courses			NI	L

Module	Syllabus	Duration (h)		
Module-I	Introduction to nanostructures and nanomaterials.	01		
Module-II	Classification of nanomaterials . Effect of size on the properties of materials and nanomaterials. Microstructural features of nanomaterials. Characterization of nanostructures and nanomaterials.			
Module - III	Synthesis of Nanomaterials via chemical routes: Chemical precipitation and coprecipitation;Metal nanocrystals by reduction, Sol-gel synthesis; Solvothermal synthesis; Thermolysis, Microwave heating synthesis; Sonochemical synthesis; Electrochemical synthesis; , Photochemical synthesis, Synthesis in supercritical fluids	08		
Module -1V	Preparation of Nanomaterials by Physical Methods: Inert gas condensation, Arc discharge, Plasma arc technique, Laser ablation, Ball Milling, Chemical vapour deposition, Electro deposition			
Module-V	Properties of nanowires, quantum wells and quantum dots	06		
Module VI	<i>Iodule VI</i> Carbon nanostructures : Synthesis and properties of fullerenes, carbon nanotubes, Graphene			
Module-VII	Application of Nanostructures and nanomaterials	01		
	Total contact hours	38		

Learning	Nanostructures and nanomaterials : Synthesis, properties & applications by Guozhong Cao
Resources	Chemistry of nanomaterials : Synthesis, properties and applications by CNR Rao et.al.

Course Code	MM5262	Course	Microelectromechanical		Course	Open	L	Т	Р	
		Name	Systems:	Materials	and	Course Category	Elective	3	0	0
Course Departm	Offering ent	Metallu	rgy and Mat	erials Enginee	ring	Pre-req	uisite Course	25	NI	L

Module	Syllabus	Duration (h)
Module-I	Introduction to microelectromechanical systems (MEMS)	1
Module-II	Materials for MEMS: Common materials used and their properties	5
Module-III	Micromachining techniques: thin-film deposition; lithography; etching; bonding.	10
Module- IV	Process integration; Case Studies; Integration of nanomaterials to MEMS.	6
Module-V	Packaging of MEMS devices; Packaging materials and processes; Case Studies	14
Module-VI	Reliability of MEMS devices; Failure related to materials; Case Studies	8
	Total contact hours	44

	S. D. Senturia, " Microsystem Design " Springer.
	N. Maluf, "An Introduction to Microelectromechanical Systems Engineering", Artech House
Learning	A. L. Hartzell, M. G. da Silva, and Herbert R. Shea, " MEMS Reliability ", Springer
Resources	M.JMadou, "Fundamentals of micro fabrication: The Science of Miniaturization , Second Edition", CRC Press, USA, 2002.
	Reza Ghodssiand Pinyen Lin (Editors), " MEMS Materialsand Processes Handbook ", Springer, 2011.

Course		Course	Biomedical	Materials	and	Course	Open	L	Т	Р
Code	MM5263	Name	Devices			Category	Elective	3	0	0
Course Offering M Department		Metallu	rgy and Mate	rials Enginee	ring	Pre-req	uisite Course	25	NI	L

Module	Syllabus	Duration (h)
Module-I	Basics: Materials and Biology: Metal, Ceramic, Polymer, Composite; Bioresorbale and bioerodable materials	04
Module-II	Biomaterials Surfaces: Physics; Surface Structure and Properties; Surface Energy; Adsorption, Segregation, and Reconstruction at Surfaces; Reactions at surfaces; Protein-Surface Interactions; Host Response to Biomaterials; Cell Adhesion Mechanisms; Coagulation Cascade	08
Module -111	Testing of biomaterials: In vitro and in vivo assessment; evaluation of blood material interactions; Microscopic techniques; Spectorscopic Techniques	06
Module-IV	Degradation of Materials: Degradation of polymers; Degradation effect on metals and ceramics	04
Module-V	Materials in medicine, biology and artificial organs : Cardiovascular Medical Devices; Implantable Cardiac Assist Devices; Orthopedic Applications; Dental Implantation; Intraocular Lens Implants; Drug Delivery Systems; Biomedical Sensors and Biosensors	12
Module-VI	Case studies : Fiber Optic Biosensors, Nanobarcodes; Drug Delivery: Controlled Release; Mechanical Pumps; Artificial Pancreas, Cartilage, Nerve Regeneration	04
	Total contact hours	38

Learning	Ratner, Buddy D., et al. Biomaterials Science: An Introduction to Materials in Medicine
Resources	B.Basu, D.Katti and Ashok Kumar; Advanced Biomaterials: Fundamentals, Processing and Applications; John Wiley & Sons, Inc., USA (ISBN: 978-0-470-19340-2), September, 2009.

Course		Course				<i>Course</i> Dep	Departmental/	L	Т	Р
Code	MM5264	Course Name	Non-Destructive Testing		Course	Specialisation Elective	3	0	0	
Course Offering Mo		Metallu	rgy	and	Materials	Pre-requisite Courses			NI	I
Department		Enginee	ering			FIE	requisite courses		111	L

Module	Syllabus	Duration (h)			
Module-I	Fundamentals: Introduction to destructive and non-destructive testing. Scope and limitations of NDT, Defects in casting, forging, heat-treated and other products namely rolled/machined, welded products etc., Causes of defects.	04			
Module-II	Visual examination: Methods. Different visual examination aids.	02			
Module-III	Leak and pressure testing of industrial components : Various methods of pressure and leak testing underlying principles of these testing systems.	03			
Module-IV	Dye penetrant method :Liquid penetrant testing – procedure; penetrant testing materials, penetrant testing method – sensitivity; application and limitations.	04			
Module-V	Magnetic particle testing : Definition and principle; magnetizing technique, procedure, equipment, sensitivity and limitations.	04			
Module- VI	Ultrasonic methods : Basic principles of wave propagation, types of waves, methods of UT, their advantages and limitations. Various types of transducers. Calibration methods, use of standard blocks. inspection methods, technique for normal beam inspection, flaw characterization technique, ultrasonic flaw detection equipment, modes of display, Characterization of defects in castings, forgings, rolled and welded products by UT. Thickness determination by ultrasonic method. Study of A, B and C scan presentations. immersion testing, advantage, limitations; acoustic emission testing – principles of AET and techniques.				
Module-VII	Radiographic testing of components : X-ray and Gamma-Ray radiography. Their principles, methods of generation. Industrial radiography techniques, applications, limitations. Types of films, screens and penetrameters. Interpretation of radiographs. Real time X-ray radiography. Safety in industrial radiography.	05			
Module-VIII	Electrical and thermal methods of NDT : Conductivity & resistivity methods and their applications. Eddy current testing. Principle, instrument, techniques, sensitivity, application, limitation,Thermal method: principle, equipment, advantages and limitations.	05			
Module-IX	Advanced methods of NDT: Holography, Tomography, MRI etc.	04			
Module-X	Selection of NDT Methods : VI, LPT, MPT, ECT, RT, UT, AET and thermography; reliability in NDT.	04			
	Total contact hours	45			

	A. V. K. Suryanarayana: Testing of Metallic Materials. PHI Pub.
	Baldev Raj, T. Jayakumar, M. Thavasimuthu: Practical Non-Destructive Testing. Narosa Pub. House.
Learning	Ravi Prakash: Non-Destructive Testing Techniques. New Age International Pub.
Louining	ASM Metals Handbook (Vol. 17): Non-Destructive Evaluation of Materials. American Society of
Resources	Metals, Metals Park, Ohio, USA.
	Paul E. Mix: Introduction to Non-destructive Testing: A Training Guide. Wiley Pub.