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Preface

I have been teaching Computer Networks to the undergraduate students in the Department
of Information Technology of Bengal Engineering and Science University, Shibpur (BESUS),
West Bengal, India for almost 10 years. I faced many difficulties in the laboratory works of
the course. We offer this course in sixth semester. Before this course, students are offered
other courses like Data Structure and Algorithms, Operating Systems, Computer Graphics
etc. So the students have exposure to the basics of programming, but all of them are not
expert programmer. To experiment with computer networks, students need to develop socket

programs. Socket programming, however, is completely new to the sixth semester students,
and also its little difficult for them to digest the concepts. Moreover, available books on
this topic are limited. And, available books are not always helpful for the new-comers in
the domain of socket programming. For example, Unix Network Programming, Volume 1 by
Stevens is a good book on this topic, but I have observed that the students could not digest
the book well. Many materials are available in Internet, but they are not well organized and
could not satisfy the demand of the course.

So, I took an initiative to prepare this short note on Socket Programming using C, which
would cover some basic concepts of socket programming and be brief. First draft of this note
was written in 2010, which is finally modified in January, 2014. Some materials from Internet
and the Steven’s book were helpful in preparing this note. The note is organized according to
the need of my course. I have put my effort to make this note as simple as possible. Someone
may complain for over simplification. However, my target was to give some basic ideas about
socket programming to my undergraduate students.

This note is primarily for beginners. It may also be helpful for others. I want to further
improve this writing. I shall be very happy if you send me your comments, suggestions and
criticisms. I believe, this writing is not error-free. Please let me know if any kind of error is
identified.

Sukanta Das
February, 2014.
email: sukanta AT it DOT becs DOT ac DOT in OR sukanta78das AT yahoo DOT com
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Chapter 1

Introduction

A computer network is a connection among a set of computers through some networking
hardware like router, switch, etc. and communication channel. Primary goal of developing
a computer network is to share resources of different computers. To share the resources,
therefore, we need support from some programs. These programs are essential for developing
any software for a networked system (and for Internet). Such programs create socket to send
and receive data to/from the network. So, these programs are commonly known as Socket

Programs. The sockets in computer networking can be thought as interfaces that can “plug
into” each other over a network. Once so “plugged in”, the programs can communicate. This
note provides a short introduction on the socket programming. Languages, like C, C++,
JAVA, Visual Basic etc, can be used in socket programming. In our opinion, however, socket
programming through C is the most exciting way to explore the networks, specially it is true
for the beginners. In this note, we use C to write socket programs.

Historically, network applications are developed in Unix environment. BSD Unix is the
first Unix that provided complete networking support. Presently, almost all commercially
available operating systems support networking and socket programming. Those operating
systems provide some system calls (kernel APIs) to the user program to develop network
applications. These APIs were originated with 4.2BSD Unix, released in 1983. The APIs,
currently used in socket programs, of each operating system are either same or similar with
that of BSD Unix. In this note, we develop socket programs for Unix or Unix-like (such as,
Linux) platforms. All the given examples, however, are compiled and run on Linux machines.

This note is organized as follows. This chapter discusses some basic concepts about computer
networks. Chapter 2 discusses about the way of accessing data link layer (DLL). Chapter 3
deals with the access of network layer. However, by socket programming, we generally refer
to development of some programs that interact with two transport layer protocols - TCP
and UDP. Chapter 4 and Chapter 5 discuss about TCP socket and UDP socket respectively.
Chapter 6 finally deals with the design concurrent server.

1.1 The TCP/IP and Internet

TCP and IP are the abbreviations of two protocols - Transmission Control Protocol (TCP)
and Internet Protocol (IP). However, the TCP/IP refers to an architecture of protocols that
are designed for large networks consisting of network segments, connected by routers. The
Internet, the largest computer network that covers the globe by interconnecting universities,
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industries, government agencies, libraries and individuals, also utilizes the TCP/IP protocol
suite. Almost all computer applications are designed considering the underlying computer
network architecture follows the TCP/IP.

The roots of TCP/IP can be traced back to research conducted by the Defence Advanced
Research Projects Agency (DARPA) of Department of Defence (DoD), USA in late 1960s. The
DoD wanted to develop a communication system that could not be destroyed even by nuclear
war. As a result of their research, world’s first computer network ARPANET (Advanced
Research Projects Agency NETwork) was launched in 1968. ARPANET is the predecessor of
today’s Internet. TCP/IP protocol suite was developed with the development of ARPANET.
The following list highlights some important TCP/IP milestones:

• In 1970, ARPANET hosts started to use Network Control Protocol (NCP), a preliminary
form of the Transmission Control Protocol (TCP).

• In 1972, the Telnet protocol was introduced. Telnet is used for terminal emulation to
connect dissimilar systems. In the early 1970s, these systems were different types of
mainframe computers.

• In 1973, the File Transfer Protocol (FTP) was introduced. FTP is used to exchange files
between dissimilar systems.

• In 1974, the Transmission Control Protocol (TCP) was specified in detail. TCP replaced
NCP and provided enhanced reliable communication services.

• In 1981, the Internet Protocol (IP) (also known as IP version 4 [IPv4]) was specified in
detail. IP provides addressing and routing functions for end-to-end delivery.

• In 1982, the Defence Communications Agency (DCA) and ARPA established the Trans-
mission Control Protocol (TCP) and Internet Protocol (IP) as the TCP/IP protocol
suite.

• In 1983, ARPANET switched from NCP to TCP/IP.

• The 4.2BSD was released in 1983 that implemented TCP/IP (and socket API) for the
first time.

The name of BSD (Berkeley Software Distribution) Unix is intimately associated with the
unix networking. The 4.2BSD did not only implement the TCP/IP protocol suite, but also
originated the socket APIs, required to develop network programs. Later versions of 4.2BSD
modified the protocol suit in different way to improve the performance. The entire 4.xBSD
project was financed by DARPA.

1.2 TCP/IP protocol architecture

The TCP/IP protocols are organized in the form of a stack. The protocols are dependent on
each other. Based on the dependency, one or more protocols can form a layer. The TCP/IP
protocol architecture refers 4 such layers. The architecture with major protocols of the layers
are noted in Figure 1.1. A layer performs some specific task to provide service to its upper
layer protocols. For example, TCP (a transport layer protocol) takes service of IP to provide
service to the protocols of application layer.

TCP/IP is most commonly associated with the Unix operating system. 4.2BSD Unix started
bundling TCP/IP protocols with the operating system. Nevertheless, TCP/IP protocols are
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Figure 1.1: The TCP/IP architecture

available for all widely-used operating systems today and native TCP/IP support is provided
in OS/2, OS/400, and Windows, as well as most Unix variants.

The protocols of Transport layer, Internet layer and Host-to-Network layer are implemented
and maintained by the kernel (Figure 1.1). The network application programs are developed
by taking the required service from the kernel. Here, the communication details are hidden
from the users, and that are dealt by kernel only.

A brief discussion on the layers are provided next.

Host-to-Network layer

The Host-to-Network layer is the lowest layer of the protocol suite. This layer is hardware
dependent, whereas the above layers of TCP/IP are hardware independent. The Host-to-
Network deals with the local network connection and the interface between host and network.
A number of network interface protocols are designed such as, Ethernet, Token Ring, FDDI,
PPP etc. A network card can be found that implements the layer.

The task of this layer is to move raw data bits (frame) from one host (or router) to another.
The processes of transmitting and receiving packets through a given link can be controlled
by the software (device driver) for the network card, as well as by the firmware or specialized
chip-sets. They perform data link functions, such as adding a frame header to prepare it for
transmission, and transmitting the frame over a physical medium. This layer, however, is
generally considered as the composition of two layers - Data Link layer and Physical layer.
For details about them, consult any standard text book on Computer Networks.

Internet layer

The Internet layer solves the problem of sending packets across one or more networks. Inter-
networking requires sending data from the source network to the destination network. This
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process is called routing. The basic protocol of this layer is the Internet Protocol (IP). It uses
a special addressing scheme, called IP address, to transport packets. In TCP/IP architecture,
all the protocols utilize the IP to send and receive data. This layer, however, is also known as
Network layer.

Transport layer

The Transport layer’s responsibilities include end-to-end message transfer capabilities with-
out depending on the underlying network, along with the error control, segmentation, flow
control, congestion control, and application addressing (port numbers). End to end message
transmission can be categorized as either connection-oriented, implemented in Transmission
Control Protocol (TCP), or connectionless, implemented in User Datagram Protocol (UDP).

The connection-oriented services are modelled after telephony system, where connection is
established first before sending the data. Here a virtual tube is formed to make the com-
munication reliable. On the other hand, no such connection is established in connection-less
service. So the connectionless services are unreliable.

The Transport layer provides the service of connecting applications through some port
numbers (described in next section). Since IP is connectionless and so provides only a best
effort delivery, the Transport layer is the first layer of TCP/IP stack to offer reliability. The
Application layer protocols (like FTP) that take service from TCP, a reliable Transport layer
protocol, can also provide reliability. The TCP addresses following reliability issues:

• data arrives in-order

• data has minimal error (that is, correctness)

• duplicate data is discarded

• lost/discarded packets are resent

• traffic congestion control

User Datagram Protocol (UDP), on the other hand, is a connectionless protocol. Like IP,
it is a best effort, unreliable protocol. Reliability is addressed through error detection using
a weak checksum algorithm. UDP is typically used for applications such as streaming media
(audio, video, Voice over IP, etc.) where on-time arrival is more important than reliability,
or for simple query/response applications like DNS lookups, where the overhead of setting
up a reliable connection is disproportionately large. Real-time Transport Protocol (RTP) is
another connectionless protocol that is designed for real-time data such as streaming audio
and video.

TCP and UDP are used to carry the application data. The appropriate transport protocol is
chosen based on the higher-layer protocol application. For example, the File Transfer Protocol
(FTP) expects a reliable connection, so it uses TCP as Transport layer protocol.

Application layer

The Application layer is the highest layer which implements the higher-level protocols used by
the applications for network communication. Examples of application layer protocols include
the File Transfer Protocol (FTP), the Simple Mail Transfer Protocol (SMTP), the Hypertext
Transfer Protocol (HTTP), etc. The user data are then coded according to application layer
protocols, and finally passed to some Transport layer protocol (like TCP, UDP, etc).
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Application layer protocols generally assume that the transport layer (and lower layer)
protocols provide a stable network connection across which to communicate. However, the
applications are usually aware of key qualities of the transport layer connection such as the end
point IP addresses and port numbers (discussed in next section). Application layer protocols
are most often associated with client-server applications.

Transport and lower layers are commonly unconcerned with the specifics of application
layer protocols. Routers and switches are typically unaware of encapsulated application data.
However, some firewall and bandwidth throttling applications do try to determine what’s
inside, as with the Resource Reservation Protocol (RSVP). It is also sometime necessary
for Network Address Translation (NAT) facilities to take account of the needs of particular
application layer protocols. (NAT allows hosts on private networks to communicate with the
outside world via a single visible IP address using port forwarding, and is an almost ubiquitous
feature of modern domestic broadband routers).

1.3 The addresses

The computers, connected in Internet, use three types of addresses for communication –
physical address (used in Host-to-Network layer), IP address (used in Internet layer) and
port number (used in Transport layer).

Physical or MAC address

Every network interface has an 6-byte long physical or MAC (Media Access Control) address.
This is the hardware address that the lowest layer of the network architecture uses to com-
municate. Hence, to forward data using a physical link, the MAC address is used. The MAC
address is sometime used to assign the IP address by DHCP (Dynamic Host Configuration
Protocol).

IP address

The IP addresses are the logical addresses which are used by Internet Protocol (IP). In inter-
networking, where we connect many networks, the IP address guides to reach the data packets
to the correct host of the correct network. There are two versions of IP (Internet Protocol):
IPv4 (IP version 4) and IPv6 (IP version 6). Each version defines the IP address differently.
However, the generic term IP address typically still refers to the addresses defined by IPv4.

The IP uses 32-bit (four-byte) addresses, which limits the address space to 4,294,967,296
(232) possible unique addresses. However, some are reserved for special purposes such as
private networks (about 18 million addresses) or multicast addresses (about 270 million ad-
dresses). This reduces the number of addresses that can potentially be allocated for routing
on the public Internet. As addresses are being incrementally delegated to end users, an IP
address shortage has been developing. This limitation has stimulated the development of IPv6
(128-bit long addresses), which is currently in the early stages of deployment, and may be the
long-term solution.

IPv4 addresses are usually represented in dot-decimal notation (four numbers, each ranging
from 0 to 255, separated by dots, e.g. 208.77.188.166). Each part represents 8 bits of the
address, and is therefore called an octet. In less common cases of technical writing, IPv4
addresses may be presented in hexadecimal, octal, or binary representations. In most repre-
sentations each octet is converted individually.
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Figure 1.2: Five classes of IP addresses

In the early stages of development of the Internet Protocol (RFC1 760), an IP address was
interpreted as the combination of network number portion and host number portion. The
highest order octet (most significant eight bits) in an address was designated the network
number and the rest of the bits were called the rest field or host identifier which were used
for host numbering within a network. This method soon proved inadequate as additional
networks developed that were independent from the existing networks. In 1981, the Internet
addressing specification was revised with the introduction of classful network architecture.

Classful network design allows a larger number of individual network assignments. Presently
the classful addressing scheme is used. There are 5 classes of IP addresses – A, B, C, D, E
and F (Figure 1.2). Out of five, three classes (A, B, and C) are defined for universal unicast
addressing. Class E is defined for multicast address and class F is reserved for future use.
To identify the class of an IP address, first few bits of the most significant octet are used
(Figure 1.2). For example, the most significant bit of an IP address as 0 signifies that the IP
address is from class A. The IP addresses of class A, B and C have two parts – network and
host. However, unlike previous, the number of bits in network and host vary from class to
class. The IP addresses in dotted decimal form of different classes are noted in Table 1.1. As
it is mentioned earlier, some of the IP addresses (like 0.0.0.0) are reserved for some special
purpose.

Therefore, network part (net-id) of a Class A, Class B or Class C IP address identifies the
network, whereas host part of the IP address identifies the host within the network. It is
observed that all host numbers of a particular network are not always used. For example, in
Class B IP address, 216 number of hosts can be addressed with a given net-id. However, the
network may not have that number of hosts. So, host part is again divided (RFC 950) into two
parts – subnet and host. Number of bits for hosts is now determined based on the maximum

1RFC stands for Request For Comments, which is followed by an integer number. Memos in the RFC
document series contain technical and organizational notes about the Internet. They cover many aspects
of computer networking, including protocols, procedures, programs, and concepts, as well as meeting notes,
opinions, and sometimes humor.
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Table 1.1: Range of IP addresses of different classes
Class No. of No. of Range of IP address

Networks Hosts (in dotted decimal format)
A 27 224 0.0.0.0 to 127.255.255.255
B 214 216 128.0.0.0 to 191.255.255.255
C 221 28 192.0.0.0 to 223.255.255.255
D 224.0.0.0 to 239.255.255.255
E 240.0.0.0 to 247.255.255.255

possible hosts in a network. To extract subnet part (subnet-id), we use subnet mask. Now,
net-id and subnet-id combinedly identify a network.

Port number

An IP address in a network (say Internet) can uniquely identify a host. A packet received
by a host can not be delivered to proper application layer protocol (that is, an application
process) using the IP address only, because the host generally run a number of such application
protocols such as FTP, HTTP, SMTP, etc. To distinguish those packets based on their target
applications, 16 bit integer numbers are introduced in Transport layer. These numbers are
called Port number. Each network application has a unique port number. The Transport
layer delivers the incoming packets to proper application based on the port number.

Application layer protocols are most often associated with client-server applications, and the
common servers have specific ports assigned to them by the IANA (Internet Assigned Numbers
Authority – the IANA also oversees the IP address assignment). For example, HTTP has port
80, Telnet has port 23, FTP has port 21, etc. The port numbers are divided into three ranges:
the well known ports, the registered ports, and the dynamic and/or private ports. The well
known ports are those from 0 through 1023. The registered ports are those from 1024 through
49151. The rest are dynamic and/or private ports. It is advised to use these dynamic ports
in the socket programs.

1.4 Operating system support

Network applications are developed above network operating system. All the protocols except
application layer protocols of TCP/IP architecture, like TCP, UDP, IP, ICMP, Ethernet etc.
are developed in and maintain by the kernel. Figure 1.3 shows the relationship between the
network application programs and the kernel. Like other application programs, network ap-
plication programs reside in application area. To develop network applications, the programs
utilize few system calls provided by the operating system.

These system calls are commonly referred as API (application program interface) imple-
mented by operating system.2 These APIs are programming language independent and can
be utilized by any programming language. Example of such APIs in Linux are: socket,
connect, accept, read, etc.

Generally user processes interact with Transport layer protocols – TCP and UDP. However,
Unix, Unix-like and other operating systems provide powerful APIs through which a user pro-

2APIs can also be implemented by an application program. APIs, implemented by kernel, are sometime
called as kernel API.
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Figure 1.4: Interaction between user processes and network protocols

cess can interact with Internet/Network layer protocols (that is, with IP) bypassing Transport
layer protocols (such as TCP, UDP). A user process can even directly talk with the Data Link
layer bypassing Network and Transport layers. These facilities are needed to develop powerful
application programs (such as tcpdump, ping, etc.), which are generally used to monitor
and administer networks. Therefore, Figure 1.1 and Figure 1.3 show the most common view
of user process interaction with network protocols. Figure 1.4 shows more perfect view of such
interaction.



Chapter 2

Accessing Datalink Layer

The datalink layer (DLL), closely related with physical layer, notices all the packets destined
to the computer. The data successfully received by the DLL is forwarded to the upper layer
for further action. When a computer sends some data, then also the DLL is trapped. So,
accessing DLL directly (just bypassing the upper layers) provides an application developer to
develop powerful applications. For example, the tcpdump (available in almost all versions
of Unix operating system) that targets to capture all the packets destined to the computer,
accesses the DLL directly.

When a packet is received by the NIC (network interface card), the packet is transferred to
the kernel by DMA (direct memory access) controller. The packet is put in a buffer. However,
the NIC can be operated in promiscuous mode and non-promiscuous mode. The promiscuous
mode allows a network device to intercept and read each network packet that arrives in its
entirety. This mode of operation (which is to be supported by the NIC and the host operating
system) is sometimes used to capture and save all the packets for analyzing and monitoring
networks. In non-promiscuous mode, the NIC listens to the packets to determine if the packet
is destined to the computer. If it is so, then the packet is forwarded to the kernel.

To access the DLL, an application program has to get access of the buffer, where the received
packet is put by the DMA controller. After getting access to the buffer, the application
program analyzes the packets to report the required results. Figure 2.1 shows the access of
data link layer packets bypassing the TCP/IP protocol stack of kernel.

In this chapter, the tcpdump program, used to dump the network traffic, is first introduced.
How to directly access the DLL is then presented.

2.1 The tcpdump program

The tcpdump is a packet analyzer that runs in command line. It allows the users to inter-
cept and display all packets being transmitted to or received from a network to which the
computer is attached. The tcpdump is found in almost all versions of Unix operating system
– Linux, Solaris, BSD, Mac OS X, etc. The packet capture library, libpcap1 that provides
implementation-independent access to the underlying packet capture facility, is used by the
tcpdump program.

1The packet capture library (pcap.h) provides a set of functions that can be called from a C program.
Interested readers may consult the manual of the library.

9
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The tcpdump program is independent of DLL protocols and network hardware. It can work
with Ethernet, as well as PPP (point-to-point protocol). The program prints the header of
each captured packet. The header tells about the packet type and the protocol to which the
data is forwarded.

In some versions of Unix (eg. Linux), a user must have superuser privileges to use tcpdump
because the packet capturing mechanisms on those systems require elevated privileges. How-
ever, the -Z option may be used to drop privileges to a specific unprivileged user. In other
Unix-like operating systems, the packet capturing mechanism can be configured to allow non-
privileged users to use it; if that is done, superuser privileges are not required. A sample
output of the program in Linux is given below. The program has run with root privilege.

# /usr/sbin/tcpdump

tcpdump: verbose output suppressed, use -v or -vv for full protocol decode

listening on eth0, link-type EN10MB (Ethernet), capture size 96 bytes

17:24:30.042138 arp who-has 10.24.8.233 tell 10.24.1.107

17:24:30.042952 IP 10.24.247.6.32771 > itbox.it.becs.ac.in.domain:

14830+ PTR? 233.8.24.10.in-addr.arpa. (42)

17:24:30.044313 IP itbox.it.becs.ac.in.domain > 10.24.247.6.32771:

14830 NXDomain* 0/0/0 (42)

17:24:30.044475 IP 10.24.247.6.32771 > itbox.it.becs.ac.in.domain:

44910+ PTR? 107.1.24.10.in-addr.arpa. (42)

17:24:30.045136 IP itbox.it.becs.ac.in.domain > 10.24.247.6.32771:

44910 NXDomain* 0/0/0 (42)

17:24:30.045333 IP 10.24.247.6.32771 > itbox.it.becs.ac.in.domain:

4230+ PTR? 1.0.24.10.in-addr.arpa. (40)

17:24:30.046112 IP itbox.it.becs.ac.in.domain > 10.24.247.6.32771:

4230* 1/0/0 PTR[|domain]

17:24:30.046252 IP 10.24.247.6.32771 > itbox.it.becs.ac.in.domain:
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47204+ PTR? 6.247.24.10.in-addr.arpa. (42)

17:24:30.046847 IP itbox.it.becs.ac.in.domain > 10.24.247.6.32771:

47204 NXDomain* 0/0/0 (42)

17:24:31.118525 arp who-has 10.24.8.206 tell 10.24.1.108

17:24:31.118724 IP 10.24.247.6.32771 > itbox.it.becs.ac.in.domain:

35453+ PTR? 206.8.24.10.in-addr.arpa. (42)

17:24:31.120859 IP itbox.it.becs.ac.in.domain > 10.24.247.6.32771:

35453 NXDomain* 0/0/0 (42)

17:24:31.120991 IP 10.24.247.6.32771 > itbox.it.becs.ac.in.domain:

18703+ PTR? 108.1.24.10.in-addr.arpa. (42)

17:24:31.121715 IP itbox.it.becs.ac.in.domain > 10.24.247.6.32771:

18703 NXDomain* 0/0/0 (42)

17:24:31.198918 arp who-has 10.24.8.234 tell 10.24.1.107

17:24:31.199108 IP 10.24.247.6.32771 > itbox.it.becs.ac.in.domain:

42027+ PTR? 234.8.24.10.in-addr.arpa. (42)

17:24:31.201024 IP itbox.it.becs.ac.in.domain > 10.24.247.6.32771:

42027 NXDomain* 0/0/0 (42)

17 packets captured

17 packets received by filter

0 packets dropped by kernel

#

The last three lines of the above output shows the summery. Kernel may drop few captured
packets due to lack of buffer space. Two types of packets (IP and arp) are found during the run
of tcpdump. It is, however, possible to use tcpdump for the specific purpose of intercepting
and displaying the communications of another user or computer. A user with the necessary
privileges on a system acting as a router or gateway through which unencrypted traffic such as
Telnet or HTTP passes can use tcpdump to view login IDs, passwords, the URLs and content
of websites being viewed, or any other unencrypted information.

Now, we shall write our own program to access the DLL.

2.2 Access to the DLL

There are three common methods in Unix systems for accessing datalink layer – the BPF
(BSD Packet Filter) for 4.4BSD and many other Berkley-derived implementations, the DLPI
(SVR4 Data Link Provider Interface) for SVR4 systems and the packet socket for the Linux
systems. The underlying principles of these three are similar. However, we shall discuss here
only the datalink access capabilities of Linux through packet socket.

To receive packets from the datalink layer in Linux, a socket of type SOCK RAW is created.

#include <sys/socket.h>

#include <netpacket/packet.h>

#include <net/Ethernet.h> /* For DLL protocols */

packet_socket = socket(PF_PACKET, int socket_type, int protocol);

Packet sockets are used to receive or send raw packets at the device driver (datalink layer)
level. They allow the user to implement protocol modules in user space on top of the physical
layer.
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The socket() returns a socket descriptor (packet socket). First parameter of socket()
is the protocol family, which is set to PF PACKET for creating packet socket. Here, the
socket type is either SOCK RAW for raw packets including the link level header or SOCK DGRAM

for cooked packets with the link level header removed. SOCK RAW packets are passed to
and from the device driver without any changes in the packet data. The network byte order
actually refers the big-endian byte ordering. But the host machine may not always follow big-
endian byte ordering. So, we convert host byte order to network byte order by using htons()
and htonl (see Section 4.4 for further details).

The parameter protocol refers the IEEE 802.3 protocol number in network byte order. The
list of allowed protocols is noted in the include file <linux/if ether.h>. However, we
consider that the underlying link layer follows the Ethernet protocol. When protocol field is
set to ETH P ALL then the packets of all protocols to which Ethernet forwards data, are
received2. All incoming packets of that protocol type will be passed to the packet socket
before they are passed to the protocols implemented in the kernel. However, a process that
implements the packet socket needs the superuser privilege.

To receive packets from the socket, just created, the recvfrom() is generally called.

#include <sys/socket.h>

int recvfrom(int packet_socket, void *buf, unsigned int len, int flags,

struct sockaddr *from, unsigned int *fromlen);

The packet socket is socket descriptor, data received from the socket is stored in buf of size
len. If from is not NULL, and the underlying protocol provides the source address, which
is filled in a proper address structure. However, the from is always typecast to the generic
socket structure struct sockaddr3. The argument fromlen is a value-result parameter,
initialized to the size of the buffer associated with from, and modified on return to indicate
the actual size of the address stored there. When receiving a packet from packet socket,
the address is passed in a standard sockaddr ll address structure. The sockaddr ll

is a device independent address structure. When transmitting a packet, the user supplied
buffer should contain the physical layer header. That packet is then queued unmodified to the
network driver of the interface defined by the destination address.

struct sockaddr_ll {

unsigned short sll_family; /* Always AF_PACKET */

unsigned short sll_protocol; /* Protocol */

int sll_ifindex; /* Interface number */

unsigned short sll_hatype; /* Header type */

unsigned char sll_pkttype; /* Packet type */

unsigned char sll_halen; /* Length of address */

unsigned char sll_addr[8]; /* Physical layer address */

};

The sll protocol refers the type of data (in network byte order format) of the Eth-
ernet frame is carrying. List of protocols are defined in the linux/if ether.h include
file. It defaults to the sockets protocol, that is, the protocol parameter specified during the

2To understand the protocol field, consult any text book for Ethernet frame format.
3Many socket APIs like accept, bind, connect, sendto, etc. use this generic socket structure struct

sockaddr. Other socket structures like sockaddr ll, sockaddr in, etc. are typecast to this generic struc-
ture.
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call of socket(). If we specify ETH P IP as the protocol during the call of socket()
(that is, we want to get those Ethernet packets which carry IP data), then sll protocol

is automatically set to ETH P IP. The sll ifindex is the interface index of the interface;
0 matches any interface (only legal for binding). sll hatype is an ARP type as defined
in the linux/if arp.h include file. sll pkttype contains the packet type. Valid types
are PACKET HOST for a packet addressed to the local host, PACKET BROADCAST for a
physical layer broadcast packet, PACKET MULTICAST for a packet sent to a physical layer
multicast address, PACKET OTHERHOST for a packet to some other host that has been
caught by a device driver in promiscuous mode, and PACKET OUTGOING for a packet orig-
inated from the local host that is looped back to a packet socket. These types make only sense
for receiving. The sll addr and sll halen contain the physical layer (e.g. IEEE 802.3)
address and its length. The exact interpretation depends on the device.

However, to send packets, it is enough to specify sll family, sll addr, sll halen,
sll ifindex. The other fields should be 0. sll hatype and sll pkttype are set on
received packets. For bind only sll protocol and sll ifindex are used.

Now we present a program to capture the datalink layer packets.

#include<sys/socket.h>

#include<netpacket/packet.h>

#include<net/ethernet.h>

int main()

{

int sockfd, len;

char buffer[2048];

struct sockaddr_ll pla;

sockfd=socket(PF_PACKET,SOCK_RAW,htons(ETH_P_ALL));

if(sockfd<0)

{

perror("packet_socket");

exit(0);

}

printf("Types of the captured packets are...\n"

while(1)

{

len = sizeof(struct sockaddr_ll);

recvfrom(sockfd,buffer,sizeof(buffer),0,

(struct sockaddr *)&pla,&len);

switch(pla.sll_pkttype)

{

// these constant values are taken from linux/if_packet.h

case 0://PACKET_HOST

printf("For_Me\n");

break;

case 1://PACKET_BROADCAST

printf("Broadcast\n");

break;

case 2://PACKET_MULTICAST

printf("Multicast\n");
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break;

case 3://PACKET_OTHERHOST

printf("Other_Host\n");

break;

case 4://PACKET_OUTGOING

printf("Outgoing\n");

break;

case 5://PACKET_LOOPBACK

printf("Loop_Back\n");

break;

case 6://PACKET_FASTROUTE

printf("Fast_Route\n");

break;

}

}

}

Above program runs in superuser mode and one can observe the packet types received by
the datalink layer.

By default all packets of a specified protocol type are passed to a packet socket. How-
ever, there is an alternative way to get a packet socket – by calling socket(PF INET,

SOCK PACKET, protocol) (which was designed for Linux 2). The main difference between
the two methods is that SOCK PACKET uses the old struct sockaddr pkt to specify an
interface, which doesnt provide physical layer independence. This structure is obsolete and
should not be used in new code.

2.3 Handling an interface in promiscuous mode

While packet socket is created, all the packets, destined to the computer, for a specified
protocol are received. If protocol field of socket() is set to ETH P ALL, the Ethernet
accepts all the broadcast packets and unicast packets addressed to it. Now to get all the
packets, which are not even intended to the host but reached somehow to the interface, the
interface is to be set in promiscuous mode.

Before setting an interface in promiscuous mode, however, we need information regarding the
interface. To get the informations, ioctl(), the function of controlling I/O (input output)
devices, is called.

#include <sys/ioctl.h>

int ioctl(int d, int request, ...);

In our case, the first argument is a valid packet socket descriptor, and second argument, a
device-dependent request code, is set to SIOCGIFINDEX. The third argument is a pointer
whose type depends on the request. The requested data is stored in a memory location,
pointed by the pointer.

The structure ifreq is used to store the interface related data. Suppose, the interface
name is eth04. Following lines are required to get the interface information. The header file
<linux/if.h> is to be included for the use of struct ifreq.

4To know about active interfaces in a computer, use ifconfig (or /sbin/ifconfig) command.



15

struct ifreq req;

strcpy(req.ifr_name,"eth0");

io = ioctl(sockfd,SIOCGIFINDEX,&req);

if(io<0)

printf("The interface eth0 does not exist");

While ioctl() is called with SIOCGIFINDEX request, the req.ifr ifindex field for
interface id is filled up. With other request options in ioctl(), other informations of the
interface (like hardware address, broadcast address) can be received.

However, one may be interested to get packets only from the specified interface. To do this,
the packet socket is to be attached with the interface. The function bind() 5 is used to
attach the interface. To bind the packet socket to an interface, one has to specify an address
in a struct sockaddr ll. Only the sll protocol and sll ifindex address fields are
used for purposes of binding.

struct sockaddr_ll pla;

pla.sll_family=PF_PACKET;

pla.sll_protocol=htons(ETH_P_ALL);

pla.sll_ifindex=req.ifr_ifindex;

b=bind(sockfd,(struct sockaddr *)&pla,sizeof(pla));

if(b<0)

perror("bind");

Finally, the setsockopt() function is called to set the socket in promiscuous mode. For
this purpose, setsockopt() expects packet mreq structure as argument:

struct packet_mreq {

int mr_ifindex; /* interface index */

unsigned short mr_type; /* action */

unsigned short mr_alen; /* address length */

unsigned char mr_address[8]; /* physical layer address */

};

The mr ifindex contains the interface index for the interface whose status should be
changed. The mr type parameter specifies which action to perform. PACKET MR PROMISC
enables receiving all packets (promiscuous mode), PACKET MR MULTICAST binds the
socket to the physical layer multicast group specified in mr address and mr alen, and
PACKET MR ALLMULTI sets the socket up to receive all multicast packets arriving at the
interface.

Following lines can set an interface in promiscuous mode. To use struct packet mreq,
the header file <netpacket/packet.h> or <linux/if packet.h> is to be included.

struct packet_mreq mr;

mr.mr_ifindex=req.ifr_ifindex;

mr.mr_type=PACKET_MR_PROMISC;

s = setsockopt(sockfd,SOL_PACKET,PACKET_ADD_MEMBERSHIP,(void *)&mr,sizeof(mr));

if(s<0)

perror("Promiscuous Mode");

5The bind(), widely used in TCP socket, is also discussed in Chapter 4.
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While the interface is set in promiscuous mode, all the packets reached somehow at the
interface can be captured. Various information of those packets, like source and destination
hardware addresses, upper layer protocols etc. of the packets can be received.

2.4 Exercises

1. Write a program to capture all the packets in promiscuous mode.

2. Modify above program to report the upper layer protocol of each captured packet.
(Hints: Use sll protocol field of struct sockaddr ll to report the protocols.

The protocol numbers are found in the linux/if ether.h library file.)

3. Prepare and inject junk Ethernet packets into the network. (*)

4. Write a program like ifconfig to get informations about the interfaces in a computer.



Chapter 3

Accessing Network layer

Application layer protocols generally interact with transport layer protocols, like TCP (Trans-
mission Control Protocol) and UDP (User Datagram Protocol). However, there are some
powerful applications (for example, ping program) which directly interact with IP (Internet
Protocol), the primary protocol of network layer. The sockets that provide the access to the
network layer are called as raw socket. In this chapter, we discuss about the raw sockets, and
how to insert any IP protocol based datagram into the network traffic.

3.1 The protocols IP, ICMP, TCP and UDP

Before proceeding further, we now introduce 4 important protocols of TCP/IP protocol stack
– IP, ICMP (Internet Control Message Protocol), TCP and UDP. The detail discussion on
these protocols can be found in any standard text book on Internet or Computer Networks.
Here we introduce in short the protocol headers and there standard structures in Unix.

To inject our own packets, we need to know the structures of the protocols to be included.
It is recommended to build the packet by using a structure, so that one can comfortably fill in
the packet headers. Unix systems provide standard structures in the header files (eg. struct
ip). One can always create his/her own structures, as long as the length of each option is
correct. Here we shall use the little endian notation. On big endian machines (some other
processor architectures than intel x86), the 4 bit-size variables exchange places. However, one
can always use the structures in the same ways in this program. Here we have used BSD
structure names. Linux systems support all these structures, but they also have their own
structures. In a program, either BSD style or Linux style is to be followed; mixing up of them
would create problems. Below the members of each header structure (in BSD style) are briefly
explained, so that one can know what values should be filled in and which meaning they have.

IP

The Internet Protocol (IP) is the Internet/Network layer protocol, used for routing the data
from the source to its destination. Every datagram contains an IP header followed by a
transport layer protocol such as TCP. To form a packet with IP header in raw socket, a
structure (struct ip) is utilized which is defined in < netinet/ip.h > header file:

struct ip {

17



18

u_int ip_hl:4, ip_v:4; /* this means, each member is 4 bit long */

u_char ip_tos;

u_short ip_len;

u_short ip_id;

u_short ip_off;

u_char ip_ttl;

u_char ip_p;

u_short ip_sum;

struct in_addr ip_src, ip_dst;

}; /* total ip header length: 20 bytes (=160 bits) */

The data types/sizes are used: unsigned char (u int, u char), unsigned short int (u short)
and unsigned int (struct in addr). The fields in the structure are explained below.

1. ip hl: IP header length in 32-bit octets (i.e. (value set in ip hl) * 4 = header length
in bytes). Common Defaults: 5; sets header length to 20 bytes (header length without
any routing options)

2. ip v: Internet Protocol version. Default is always 4

3. ip tos: Type of Service controls the priority of the packet. The first 3 bits stand for
routing priority, the next 4 bits for the type of service (delay, throughput, reliability and
cost). Common Defaults: 0x00 (normal)

4. ip len: Length contains the total length of the IP datagram. This includes IP header,
ICMP or TCP or UDP header and payload size in bytes

5. ip id: The id sequence number is mainly used for reassembly of fragmented IP data-
grams. When sending single datagrams, each can have an arbitrary ID

6. ip off: The fragment offset is used for reassembly of fragmented datagrams. The
first 3 bits are the fragment flags, the first one always 0, the second the do-not-fragment
bit (set by ip off | = 0x4000) and the third the more-flag or more-fragments-following
bit (ip off | = 0x2000). The following 13 bits is the fragment offset, containing the
number of 8-byte big packets already sent.

7. ip ttl: The Time To Live is the amount of hops (routers to pass) before the packet is
discarded, and an ICMP error message is returned. The maximum is 255.

8. ip p: This field specifies the protocol to which the IP datagram is to be delivered for
necessary action. The protocols can be TCP (6), UDP (17), ICMP (1), or whatever
protocol follows the ip header. Look in /etc/protocols for more

9. ip sum: The datagram checksum for the whole ip datagram. Every time anything in
the datagram changes, it needs to be recalculated, or the packet will be discarded by
the next router.

10. ip src and ip dst: The source and destination IP addresses, converted to long format,
e.g. by inet addr().
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ICMP

Internet Control Messaging Protocol (ICMP) is an Internet/Network layer protocol which is
merely an addition to IP to carry error, routing and control messages and data. IP itself has
no mechanism for establishing and maintaining a connection, or even containing data as direct
payload. The header structure of ICMP, defined in < netinet/ip icmp.h >, is shown below.

struct icmp {

unsigned char icmp_type;

unsigned char icmp_code;

unsigned short int icmp_cksum;

/* The following data structures are ICMP type specific */

unsigned short int icmp_id;

unsigned short int icmp_seq;

}; /* total icmp header length: 8 bytes (=64 bits) */

Each field of the above structure is explained below.

1. icmp type: The message type, for example 0 - echo reply, 8 - echo request, 3 - desti-
nation unreachable. See netinet/ip icmp.h to get all message types.

2. icmp code: This is significant when sending an error message (unreach), and specifies
the kind of error. Again, consult the include file (netinet/ip icmp.h) for more.

3. icmp cksum: The checksum for the icmp header + data; same as the IP checksum.
Note: The next 32 bits in an icmp packet can be used in many different ways. This
depends on the icmp type and code. The most commonly seen structure, an ID and
sequence number, is used in echo requests and replies, hence we only use this one, but
the header is actually more complex.

4. icmp id: used in echo request/reply messages, to identify the request.

5. icmp seq: identifies the sequence of echo messages, if more than one is sent.

UDP

The User Datagram Protocol (UDP) is a transport protocol for sessions that need to exchange
data. Both transport protocols, UDP and TCP provide 65535 different source and destination
ports. The destination port is used to connect to a specific service on that port. Unlike
TCP, UDP is not reliable, since it doesn’t use sequence numbers and stateful connections.
This means UDP datagrams can be spoofed, and might not be reliable (e.g. they can be lost
unnoticed), since they are not acknowledged using replies and sequence numbers. Following
is the structure, defined in < netinet/udp.h >.

struct udphdr { /* For BSD Unix */

u_short uh_sport; /* source port */

u_short uh_dport; /* destination port */

u_short uh_ulen; /* udp length */

u_short uh_sum; /* udp checksum */

};
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struct udphdr { /* For Linux */

u_short source;

u_short dest;

u_short len;

u_short check;

};

Here u short is the typedef of unsigned short int.

TCP

The Transmission Control Protocol (TCP) is the mostly used transport protocol that provides
mechanisms to establish a reliable connection with some basic authentication, using connection
states and sequence numbers. Like UDP, a structure (struct tcphdr) is defined to form
one’s own TCP header in raw socket. There are two variant of the structure - one for Linux,
another for BSD Unix. Following is the BSD version, defined in < netinet/tcp.h > of the
structure.

struct tcphdr {

u_short th_sport;

u_short th_dport;

tcp_seq th_seq;

tcp_seq th_ack;

u_int th_x2:4, th_off:4; /* each member is 4-bit long */

u_char th_flags;

u_short th_win;

u_short th_sum;

u_short th_urp;

}; /* total tcp header length: 20 bytes (=160 bits) */

The data types/sizes are used: unsigned char (u int, u char), unsigned short int (u short)
and unsigned long int (tcp seq). The fields in the structure are explained next.

1. th sport: The source port, which has the same function as in UDP.

2. th dport: The destination port, which has the same function as in UDP.

3. th seq: The sequence number is used to enumerate the TCP segments. The data in a
TCP connection can be contained in any amount of segments (=single TCP datagrams),
which will be put in order and acknowledged. For example, if you send 3 segments, each
containing 32 bytes of data, the first sequence would be (N+)1, the second one (N+)33
and the third one (N+)65. ”N+” because the initial sequence is random.

4. th ack: Every packet that is sent is acknowledged with the ACK flag set (see below).
The th ack field contains the previous th seq number.

5. th x2: This is unused and contains binary zeroes.

6. th off: The segment offset specifies the length of the TCP header in 32bit/4byte blocks.
Without TCP header options, the value is 5.

7. th flags: This field consists of six binary flags. Using BSD headers, they can be
combined like this: th flags = FLAG1 | FLAG2 | FLAG3 · · ·
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TH URG: Urgent. Segment will be routed faster, used for termination of a
connection or to stop processes (using telnet protocol).

TH ACK: Acknowledgement. Used to acknowledge data and in the second
and third stage of a TCP connection initiation (see IV.).

TH PSH: Push. The systems IP stack will not buffer the segment and forward
it to the application immediately (mostly used with telnet).

TH RST: Reset. Tells the peer that the connection has been terminated.

TH SYN: Synchronization. A segment with the SYN flag set indicates that
client wants to initiate a new connection to the destination port.

TH FIN: Final. The connection should be closed, the peer is supposed to
answer with one last segment with the FIN flag set as well.

8. th win: Window. The amount of bytes that can be sent before the data should be
acknowledged with an ACK before sending more segments.

9. th sum: The checksum of pseudo header, TCP header and payload. The pseudo header
is a structure containing IP source and destination address, 1 byte set to zero, the
protocol (1 byte with a decimal value of 6), and 2 bytes (unsigned short) containing the
total length of the TCP segment.

10. th urp: Urgent pointer. Only used if the urgent flag is set, else zero. It points to the
end of the payload data that should be sent with priority.

Following is the Linux format of the struct tcphdr.

struct tcphdr {

unsigned short source;

unsigned short dest;

unsigned long seq;

unsigned long ack_seq;

# if __BYTE_ORDER == __LITTLE_ENDIAN

unsigned short res1:4;

unsigned short doff:4;

unsigned short fin:1;

unsigned short syn:1;

unsigned short rst:1;

unsigned short psh:1;

unsigned short ack:1;

unsigned short urg:1;

unsigned short res2:2;

# elif __BYTE_ORDER == __BIG_ENDIAN

unsigned short doff:4;

unsigned short res1:4;

unsigned short res2:2;

unsigned short urg:1;

unsigned short ack:1;

unsigned short psh:1;

unsigned short rst:1;

unsigned short syn:1;

unsigned short fin:1;

# endif
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unsigned short window;

unsigned short check;

unsigned short urg_ptr;

};

If you have a hybrid Linux/BSD header file, to use the BSD format, add #define USE BSD

and #define FAVOR BSD at the very top of your definitions or as a compiler flag (e.g. gcc
-D USE BSD -D FAVOR BSD), to ensure the flags are set before any use of #include
<netinet/tcp.h>. Mac OS X systems include only BSD style, whereas Linux installations
typically include both forms, making the BSD format more portable.

3.2 Raw sockets

The basic concept of low level sockets is to send a single packet at one time, with all the
protocol headers filled in by the program (instead of the kernel). We create a raw socket with
the following parameters to socket().

int s;

s = socket (PF INET, SOCK RAW, protocol);

where protocol is one of the constants IPPROTO xxx defined by including the <netinet/in.h>
header, such as IPPROTO UDP. While the raw socket is created, one can send his/her own
IP packets over it, and receive IP packets having a protocol field that match with the protocol
specified during the creation of raw socket. That means, for listening to TCP, UDP and ICMP
traffic, you have to create 3 separate raw sockets, using IPPROTO TCP, IPPROTO UDP and
IPPROTO ICMP (the protocol numbers are 6 for TCP, 17 for UDP and 1 for ICMP). If a raw
socket is created with a protocol of 0, then that socket receives a copy of every raw datagram
that the kernel passes to raw sockets. The first parameter of socket() is the protocol family,
which is set to PF INET (PF INET stands for Protocol Family of InterNET), and the second
parameter is the socket type which is SOCK RAW for creating raw socket.

However, only superuser can create a raw socket. This prevents normal users from writing
their own IP datagrams to the network. Following is the code of a small sniffer, that dumps
out the contents of all TCP packets, received. The IP and TCP headers are excluded from
the application data. It also prints the source IP adress of the received packet.

#include <stdio.h>

#include <stdlib.h>

#include <sys/socket.h>

#include <netinet/ip.h>

#include <netinet/tcp.h>

int main()

{

int fd = socket (PF_INET, SOCK_RAW, IPPROTO_TCP);

struct ip *iph;

char buffer[8192]; /* single packets are usually not bigger than 8192 bytes */

while (recvfrom (fd, buffer, 8192, 0, NULL, NULL) > 0)

{
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iph = (struct ip*) buffer;

printf("Received packet from %s\n", inet_ntoa(iph->ip_src));

printf ("TCP data: %s\n", buffer+sizeof(struct ip)+sizeof(struct tcphdr));

}

}

To receive the packets, recvfrom() is used in the above program. However, we can use
read(), recv() instead of recvfrom(). The IP header of the received packet is in the
front of buffer. To read the header, we typecast the buffer. We then use inet ntoa() to
print the source IP address of received packet in dotted decimal format.

If one wants to inject IP packets into the network, the IP HDRINCL socket option can be
set.

const int on = 1;

if(setsockopt(s, IPPROTO IP, IP HDRINCL, &on, sizeof(on)) < 0)

error;

The IP HDRINCL can be set to inform the kernel that the header is included in the data, so
do not insert its own header into the packet before the data. If the option is not set, then the
kernel builds the IP header in front of data to be injected into the network.

3.3 Building and injecting datagrams

Now, by putting together the knowledge about the protocol header structures with some basic
C functions, it is easy to construct and send any datagram(s). We will demonstrate this with a
small sample program that constantly sends out SYN requests to one host (Syn flooder). The
SYN request is used to establish TCP connection between client and server (see Chapter 4).

#define P 25 /* lets flood the sendmail port */

#include <stdio.h>

#include <stdlib.h>

#include <sys/socket.h>

#include <netinet/ip.h>

#define __FAVOR_BSD /* use bsd’ish tcp header. if not defined,

system’s default of tcp header will be taken.

For example, linux will take the linux default,

where struct tcphdr members are different.

*/

#include <netinet/tcp.h>

unsigned short /* this function generates header checksums */

csum (unsigned short *buf, int nwords)

{

unsigned long sum;

for (sum = 0; nwords > 0; nwords--)

sum += *buf++;

sum = (sum >> 16) + (sum & 0xffff);
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sum += (sum >> 16);

return ˜sum;

}

int

main (void)

{

int s = socket (PF_INET, SOCK_RAW, IPPROTO_TCP); /* open raw socket */

char datagram[4096]; /* this buffer will contain ip header, tcp header,

and payload. we’ll point an ip header structure

at its beginning, and a tcp header structure after

that to write the header values into it */

struct ip *iph = (struct ip *) datagram;

struct tcphdr *tcph = (struct tcphdr *) datagram + sizeof (struct ip);

struct sockaddr_in sin;

/* the sockaddr\_in containing the dest. address is used

in sendto() to determine the datagrams path */

sin.sin_family = AF_INET;

sin.sin_port = htons (P);/* you byte-order >1byte header values to network

byte order (not needed on big endian machines) */

sin.sin_addr.s_addr = inet_addr ("127.0.0.1");

memset (datagram, 0, 4096); /* zero out the buffer */

/* we’ll now fill in the ip/tcp header values, see above for explanations */

iph->ip_hl = 5;

iph->ip_v = 4;

iph->ip_tos = 0;

iph->ip_len = sizeof (struct ip) + sizeof (struct tcphdr); /* no payload */

iph->ip_id = htonl (54321); /* the value doesn’t matter here */

iph->ip_off = 0;

iph->ip_ttl = 255;

iph->ip_p = 6;

iph->ip_sum = 0; /* set it to 0 before computing the actual checksum later */

iph->ip_src.s_addr = inet_addr ("1.2.3.4");/* SYN’s can be blindly spoofed */

iph->ip_dst.s_addr = sin.sin_addr.s_addr;

tcph->th_sport = htons (1234); /* arbitrary port */

tcph->th_dport = htons (P);

tcph->th_seq = random ();/* in a SYN packet, the sequence is a random */

tcph->th_ack = 0;/* number, and the ack sequence is 0 in the 1st packet */

tcph->th_x2 = 0;

tcph->th_off = 0; /* first and only tcp segment */

tcph->th_flags = TH_SYN; /* initial connection request */

tcph->th_win = htonl (65535); /* maximum allowed window size */

tcph->th_sum = 0;/* if you set a checksum to zero, your kernel’s IP stack

should fill in the correct checksum during transmission */

tcph->th_urp = 0;

iph->ip_sum = csum ((unsigned short *) datagram, iph->ip_len >> 1);
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/* finally, it is very advisable to do a IP_HDRINCL call, to make sure

that the kernel knows the header is included in the data, and doesn’t

insert its own header into the packet before our data */

{ /* lets do it the ugly way.. */

int one = 1;

const int *val = &one;

if (setsockopt (s, IPPROTO_IP, IP_HDRINCL, val, sizeof (one)) < 0)

printf ("Warning: Cannot set HDRINCL!\n");

}

while (1)

{

if (sendto (s,/* our socket */

datagram,/* the buffer containing headers and data */

iph->ip_len,/* total length of our datagram */

0,/* routing flags, normally always 0 */

(struct sockaddr *) &sin,/* socket addr, just like in */

sizeof (sin)) < 0) /* a normal send() */

printf ("error\n");

else

printf (".");

}

return 0;

}

3.4 Ping program

The ping is a publicly available program that is used to check whether a host (or router/gate-
way) is reachable from the host. The operation of ping is very simple: ping uses the ICMP
protocols mandatory ECHO REQUEST datagram to elicit an ICMP ECHO RESPONSE from
a host or gateway. ECHO REQUEST datagrams (pings) have an IP and ICMP header, fol-
lowed by a struct timeval and then an arbitrary number of pad bytes used to fill out the
packet. Here a different version of ping program is presented.

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <string.h>

#include <netdb.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <arpa/inet.h>

#include <netinet/in.h>

#include <netinet/ip.h>

#include <netinet/ip_icmp.h>
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unsigned short checksum(unsigned short *addr, int len);

int main(int argc, char* argv[]) {

int len, ip_len, n;

char buff[1024];

struct ip *iphdr;

struct icmp *icmphdr;

int sockfd;

struct addrinfo hints, *res;

struct sockaddr_in raddr;

/* check args */

if (argc < 2) {

fprintf(stderr, "Usage: sping <ip_address>\n");

exit(EXIT_SUCCESS);

}

/* get socket info */

if ( (sockfd = socket(AF_INET, SOCK_RAW, IPPROTO_ICMP)) == -1) {

fprintf(stderr, "Cannot create raw socket. You must be root.\n");

exit(EXIT_FAILURE);

}

memset(&hints, 0, sizeof(struct addrinfo));

hints.ai_flags = AI_CANONNAME;

hints.ai_flags = 0;

hints.ai_socktype = 0;

if ( (n = getaddrinfo(argv[1], NULL, &hints, &res)) != 0) {

fprintf(stderr, "Error in getaddrinfo()\n");

exit(EXIT_FAILURE);

}

/* fill in icmp header info */

icmphdr = (struct icmp *) buff;

icmphdr->icmp_type = ICMP_ECHO;

icmphdr->icmp_code = 0;

icmphdr->icmp_id = 0;

icmphdr->icmp_seq = 0;

len = 8;

icmphdr->icmp_cksum = 0;

icmphdr->icmp_cksum = checksum((u_short*) icmphdr, len);

/* send the packet! */

sendto(sockfd, buff, len, 0, res->ai_addr, res->ai_addrlen);

/* wait for reply packet and set timeout */
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memset(buff, 0, 1024);

n = sizeof(struct sockaddr_in);

recvfrom(sockfd, buff, 1024, 0, (struct sockaddr *) &raddr, &n);

/* print results to screen */

iphdr = (struct ip *)buff;

ip_len = iphdr->ip_hl << 2;

icmphdr = (struct icmp *) (ip_len + buff);

if (icmphdr->icmp_type == ICMP_ECHOREPLY)

printf("Alive.\n", argv[1]);

else

printf("%s is not responding.\n", argv[1]);

printf("message received from %s\n",inet_ntoa(raddr.sin_addr));

close(sockfd);

return 0;

}

/*---------------------------------------------------------------- CHECKSUM() --

* Internet checksum function. Taken from Steven’s UNIX Network

* Programming book.

*/

unsigned short checksum(unsigned short *addr, int len) {

int nleft = len;

int sum = 0;

unsigned short *w = addr;

unsigned short answer = 0;

/*

* Our algorithm is simple, using a 32 bit accumulator (sum), we add

* seqential 16 bit words to it, and at the end, fold back all the

* carry bits from the top 16 bits into the lower 16 bits.

*/

while (nleft > 1) {

sum += *w++;

nleft -= 2;

}

/* mop up an odd byte, if necessary */

if (nleft == 1) {

*(unsigned char *) (&answer) = *(unsigned char *) w;

sum += answer;

}

/* add back carry outs from top 16 bits to low 16 bits */

sum = (sum >> 16) + (sum & 0xffff); /* add hi 16 to low 16 */

sum += (sum >> 16); /* add carry */
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answer = ˜sum; /* truncate to 16 bits */

return answer;

}

3.5 Exercise

1. Write a program that reads all TCP, UDP and ICMP packets arriving in the host and
outputs the packet type (TCP, UDP or ICMP) and sender’s IP address.

2. Write a program to capture all IP packets. Now run this program and run another
program that capture all DLL packets. Identify which packets are absent here.

3. Run the ping program described above. Point out the limitations (comparing with
available ping program) and modify the program to overcome those limitations.

4. Write a program to trace route between two machines. The output should be a list of
all routers along a path to a given destination.
Hints: The Time-To-Live field (th ttl) in an IP header is used to recover from routing
errors. When the datagram passes a router, the Time-To-Live field is decremented by
1. If it reaches to 0, the router discards the datagram and sends ICMP time exceeded

(ICMP TIMXCEED) message back to the sender. The sender now can get the router’s
IP address.



Chapter 4

TCP Sockets

Two or more networked computers can interact among themselves while some network appli-
cation programs are executed on those computers. The programs written using packet socket
(Chapter 2) and raw socket (Chapter 3) are generally used to monitor and administer the
networks. Almost all application programs, however, are written by using TCP sockets (also
known as stream socket) and UDP socket (datagram socket).

The network application processes, developed using TCP and UDP sockets, can be divided
into two classes – clients and servers. A number of architecture, like peer-to-peer architecture,
single tier client-server architecture, two tier client-server architecture etc., are proposed to
develop network applications. However, basic components of these architecture are client
processes and server processes. Client initiates communication by requesting the server for
some service. The server then replies the client. This scenario is depicted in Figure 4.1.

Since TCP (Transmission Control Protocol) is connection oriented protocol, communication
between client and server using TCP is reliable. Unreliable communication channel and lower
layer protocols do not affect the reliability of TCP. The protocol virtually forms a tube through
which a stream of data flow between client and server. So, the TCP socket is also called as
stream socket.

A TCP socket is defined as an endpoint for communication. A connection can be viewed as
the pair <IP Address, Port>. An IP address locates the computer in the network, whereas
a port number, a 16-bit integer, identifies a particular application layer protocol running on
that machine.1 On Unix machines, the file /etc/services contains a list of services provided
by that machine, along with the ports, used by the services.

4.1 TCP Clients and Servers

The basic building blocks of network programming using TCP are TCP clients and servers.
The client initiates communication by requesting the server for some service. The server then
replies the client (see Figure 4.1). A TCP connection can be thought as a pair of connections
– one from client to server and other from server to client. A server listens on a port, waiting
for incoming requests from clients.

For example, a web server listens at port 80 for incoming request from clients (web browsers).
When a client wishes to make a connection with a server, the client is assigned a port by the

1See Section 1.2 for the discussions on IP addresses and port numbers.
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Request to the server

Response to the client

Client Server

Figure 4.1: Communication between client and server

local host. Suppose that a client C (at IP address 146.86.3.15) wishes to browse a web page on
the server 146.86.5.20. If the port 12345 is assigned to C by the local host of C, the connection
between the client and the server is uniquely identified by the following:

< 146.86.3.15 : 12345, 146.86.5.20 : 80 >

To establish connection between client and server, the server is to be ready first to accept
the connection request from client. A number of socket APIs are to be called to prepare the
server. While server is ready and client makes request for service, a three way handshaking2

is performed to establish the connection between client and server. The client always initiates
the communication.

4.2 Socket address

The sockets, created by some application program, are uniquely identified by the socket ad-
dresses. All the communication between two processes in the network (client and server) are
carried out by the socket address.

A socket address is the combination of an IP address and a port (which is mapped to
the application process) into a single identity. The socket address structures are defined in
Unix/Linux. Most of the socket APIs require a pointer to a socket address structure as an
argument. An IPv4 socket address structure, commonly called an “Internet socket address
structure” is named sockaddr in and defined in <netinet/in.h> header.

struct in_addr {

in_addr_t s_addr; /* 32-bit IP address; network byte ordered */

};

struct sockaddr_in {

uint8_t sin_len; /* length of structure */

sa_family_t sin_family; /* PF_INET */

in_port_t sin_port; /* TCP/UDP port number; network byte ordered */

struct in_addr sin_addr; /* IP address */

char sin_zero[8]; /* unused */

};

This definition is noted in Posix unix standard. Description of the datatype is noted in the
following table:

2See any text book on computer networks for three way handshaking
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Datatype Description Defined in
init8 t signed 8-bit integer < sys/types.h >
uint8 t unsigned 8-bit integer < sys/types.h >
init16 t signed 16-bit integer < sys/types.h >
int32 t signed 32-bit integer < sys/types.h >
unit32 t unsigned 32-bit integer < sys/types.h >
sa family t address family of socket address structure < sys/socket.h >
socklen t length of socket address structure, normally uint32 t < sys/socket.h >
in addr t IPv4 address, normally uint32 t < sys/types.h >
in port t TCP or UDP port, normally uint16 t < sys/types.h >

Before using this structure in socket APIs, the fields of the structure are to filled up with
the appropriate values and those values are to be in proper format. For example, the s addr

field can not be set with the dotted decimal format of an IP address, rather it is to be filled
with network byte ordered format (that is, big-endian format, see Section 4.4).

socket(), bind(), listen(), accept() and socket(), connect() are the el-
ementary socket APIs required for server and client respectively. The APIs are defined
in <sys/socket.h>. The APIs are to be called in a particular sequence. The sequence is
shown in Figure 4.2. It is clear from the figure that after execution of socket(), bind(),

listen(), accept() APIs in server side, a client can request for connection. The socket
APIs with its argument are discussed in the next section. However, read() and write() are
used here for data transfer. There are other functions for the same – recv(), recvfrom(),

send(), sendto().

4.3 TCP Socket APIs

The APIs, shown in Figure 4.2, are discussed below.

socket:

# include <sys/socket.h>

int socket(int family, int type, int protocol);
Returns: non-negative integer if successful, -1 on error.

In short, this function creates an end point for communication. The return value from this
function is a handle (an integer value) to a socket. This integer is passed as an argument
to all of the other socket APIs. The family parameter should be set to AF INET (Ad-
dress Family for InterNET) or PF INET (Protocol Family for InterNET). Practically both,
AF INET and PF INET are same, and any one can be used. The type parameter can be
either SOCK STREAM (for TCP), or SOCK DGRAM (for UDP). The protocol field is in-
tended for specifying a specific protocol in case the network model support different types of
stream and datagram models. However, TCP/IP only has one protocol for each, so this field
should always be set to 0. Following is an example to create a TCP socket:

int s;

s = socket(AF INET, SOCK STREAM, 0);
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Figure 4.2: Socket APIs for elementary TCP client-server
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connect:

# include <sys/socket.h>

int connect(int s, const struct sockaddr ∗addr, int addr len);
Returns: 0 if successful, -1 on error.

This API, issued by a client, establishes a connection with the server. The first argument is
a handle, created by socket(). The address of the server is specified in a structure, pointed by
addr, and its size is noted in addr len. The connect() blocks until either the connection is
successfully established, or an error occurs. If successful, the socket descriptor gets ready for
reading and writing. The connect() in client side and the accept() in server side are directly
involved in connection establishment through three-way handshaking. Example of a connect
call:

int c;

struct sockaddr in server addr;

s = socket(AF INET, SOCK STREAM, 0);

server addr.sin family = AF INET;

server addr.sin port = htons(9999);

inet pton(AF INET,"146.86.5.20",&server addr.sin addr);

c = connect(s, (struct sockaddr*)&server addr, sizeof(sockaddr in));

if(c<0)

{
printf("connect error");

exit(0);

}

The socket address structure is filled properly before calling connect(). Port number and
IP address are considered arbitrarily. It can be noted that server address is type casted
into struct sockaddr. The reason is, sockaddr is a generic socket address structure,
whereas sockaddr in is IPv4 Internet socket address structure. The function inet pton()

is discussed in next section.

bind:

The bind() is commonly called by TCP server. Before sending and receiving data using a
socket, it must first be associated with a local source port and a network interface address.
The mapping of a socket to a TCP/UDP source port and IP address is called a “binding”.
The prototype for bind is as follows:

# include <sys/socket.h>

int bind(int s, const struct sockaddr ∗myaddr, int addr len);
Returns: 0 if successful, -1 on error.
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The first argument is a socket handle (the number returned from socket()). The second
argument specifies the server’s address, and its size is the third argument. The address includes
a port number and an IP address. If specifying an exact source port is not required, setting
this value to INADDR ANY(0) allows the operating system to pick any available port number.
The sin addr field specifies which network interface device to use. Since most hosts only
have one network interface and only one IP address, this field should be set with the host’s own
IP address. However, the socket library provides no immediate way for a host to determine
its own IP address! However, specifying the value of INADDR ANY(0) in this field tells the
operating system to pick any available interface and address.

Example:

struct sockaddr in sin;

int s, b;

s = socket(AF INET, SOCK STREAM, 0);

sin.sin family = AF INET;

sin.sin port = htons(9999);

sin.sin addr.s addr = INADDR ANY;

b = bind(s, (struct sockaddr *)&sin, sizeof(sin));

if(b<0)

{
printf("bind error");

exit(0);

}

/* s is now a usable TCP socket. Server port is 9999. */

It is recommended that the return from bind be checked; bind() will fail by returning -1 if
the port that is being requested for use is already taken. If bind() is unsuccessful, connection
can not be established.

listen:

This API is called only by a TCP server. The listen() converts an unconnected socket (pre-
pared by socket() and bind()) into a passive socket, indicating that the kernel should accept
incoming connection requests directed to this socket. The prototype for listen() is as
follows:

# include <sys/socket.h>

int listen(int s, int backlog);
Returns: 0 if successful, -1 on error.

The first argument is a socket handle. The second argument specifies the maximum number
of connections that can be pending on the specified socket (typically set to a large value, such
as 1024).
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accept:

This is a blocking operation that does not return until a remote client has established a
connection; when it completes, it returns a new socket that corresponds to this just-established
connection. The socket is sometime referred as accepted socket. To distinguish with the
previous, the socket prepared after listen() called listening socket. All communication
with client is carried out by the connected socket. The prototype for accept() is as follows:

# include <sys/socket.h>

int accept(int s, struct sockaddr ∗Caddr, int ∗Caddr len);
Returns: non-negative descriptor if successful, -1 on error.

After successful execution of accept(), the socket address Caddr (and its size Caddr len) is
filled up with client’s information. The Caddr len is a value-result argument: the caller must
initialize it to contain the size (in bytes) of the structure pointed to by Caddr; on return it
will contain the actual size of the client’s address. If the server does not want to know the
client’s information, second and third arguments can be set as NULL.

The listening socket can be viewed as a pair server’s IP address and server’s port number.
Since the pair of client’s IP address and client’s port number is not associated with listening
socket, no data exchange between client and server is possible. On the other hand, an accepted

socket associates both the pairs – a pair of server’s IP address and server’s port number, and
another pair of client’s IP address and client’s port number. When we get an accepted socket,
we declare that connection is established. Client and server exchange their data through
accepted socket.

write, read, send and recv:

Once connection is established, the application processes invoke the following functions to
send and receive data:

int write(int confd, char *buffer, int msg len);

int read(int confd, char *buffer, int msg len);

OR

int send(int confd, char *buffer, int msg len, int flags);

int recv(int confd, char *buffer, int buf len, int flags);

The first argument of above functions is the connected socket descriptor, which is returned
by connect(). The read(), write() operations are also used in file handling. send(),
recv() take a set of flags that control certain details of the operation.

4.4 Few essential functions

Apart for the socket APIs, a few more functions are almost essential for socket programming.
Some functions are discussed here.
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IP address conversion

The users deal with the presentation format (that is, dotted decimal format) of an IP address.
On the other hand, the computers understand only the network byte order (that is, big-endian)
format. Following functions play the role of conversion between two formats.

# include <arpa/inet.h>

int inet pton(int family, const char ∗presentation, void ∗numeric);

Returns: 1 if OK, 0 if input is not a valid presentation format, -1 on error

Above function converts an IP address from the presentation format to network byte
order format. Here, family is AF INET, presentation is a string points to an IP ad-
dress (dotted decimal format), and numeric is the pointer where the converted IP address
is stored. The same task is also performed by inet aton(const char ∗presentation,
struct in addr ∗numeric). However, the following function does the reverse operation.

# include <arpa/inet.h>

const char *inet ntop(int family, const void ∗numeric, char ∗presentation,
socklen t plen);

Returns: pointer to result if OK, NULL on error

This function converts the IP address numeric (which is in network-byte order format) into
a character string presentation of plen byte long. The function char *inet ntoa(struct

in addr numeric), which takes IP address in network-byte order format and returns a string
containing IP address in dotted decimal format performs similar task like inet ntop().

Byte ordering functions

There are two ways to store the bytes of a word in memory – little-endian byte order and big-

endian byte order. In little-endian byte order, the first byte is the low-order byte that holds
the LSB. On the other hand, the first byte of big-endian byte order is the high-order byte that
holds the MSB. The byte ordering of a computer (host) may be little-endian or big-endian.
We refer the byte ordering of a host as host byte order. However, the network protocols have
to follow a single byte order, so that the sending protocol stack and the receiving protocol
stack understand the data sent uniquely. We call this byte order used by the protocols as
network byte order. The Internet protocols follow big-endian byte ordering.

To fill up the sockaddr in structure, IP address and port number are to be set in proper
format. We have already discussed the function that is used to convert an IP address into
its proper format. To fill up the sin port field with a 16-bit port number, the port number
(supplied by the user in host byte order format) is to be converted into network byte order.
Following functions perform such conversion.

# include <netinet/in.h>

uint32 t htonl(uint32 t hostlong);

uint16 t htons(uint16 t hostshort);
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Return: value in network byte order

In the names of these functions, h stands for host, n stands for network, l stands for long,
and s stands for short. hostlong and hostshort denote 32-bit (long) integer and 16-bit (short)
integer respectively, supplied by the host. Since port number is 16- bit long, htons() function
is used. However, for the reverse conversion, that is, from network byte order to host byte
order, following functions can be used.

uint32 t ntohl(uint32 t netlong);

uint16 t ntohs(uint16 t netshort);

Return: value in host byte order

Apart from the above, some more functions for string operations are used in socket pro-
gramming. Few of such functions are – memset(), bzero() (to set the supplied bytes to 0),
memcpy(), bcopy() (to copy the content from source byte to destination byte), etc.

4.5 A simple ftp client-server program

We present here a TCP client and a TCP server program for file transfer. The client uploads
a file to the server.

4.5.1 Client code

The client program takes the server’s IP address and the file to be uploaded as input. A chunk
of data read from the file, and the data is sent to the server. This process continues until the
whole is transferred.

1 #include<stdio.h>

2 #include<sys/socket.h>

3 #include<arpa/inet.h>

4

5 #define MAXLEN 100

6 #define PORT 12345

7

8 int main(int argc, char **argv)

9 {

10 int s;

11 char buff[MAXLEN], ACK[3];

12 struct sockaddr_in saddr;

13 FILE *fp;

14

15 if(argc!=3)

16 {

17 printf("Usage:%s <Server’s address> <file name>\n",argv[0]);

18 exit(0);

19 }
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20 s = socket(AF_INET, SOCK_STREAM, 0);

21 if(s<0)

22 {

23 perror("socket");

24 exit(0);

25 }

26 saddr.sin_family=AF_INET;

27 saddr.sin_port=htons(PORT);

28 if(inet_pton(AF_INET,argv[1],&saddr.sin_addr)<=0)

29 {

30 printf("Error. Invalid IP address\n");

31 exit(0);

32 }

33

34 if(connect(s,(struct sockaddr *)&saddr,sizeof(saddr))<0)

35 {

36 perror("connet");

37 exit(0);

38 }

39

40 write(s,argv[2],strlen(argv[2]));

41 if((fp=fopen(argv[2],"r"))==NULL)

42 {

43 perror(argv[2]);

44 exit(0);

45 }

46 read(s,ACK,2);

47 while(1)

48 {

49 fgets(buff,MAXLEN-1,fp);

50 if(feof(fp))

51 break;

52 write(s,buff,sizeof(buff));

53 read(s,ACK,2);

54 }

55 fclose(fp);

56 close(s);

57 }

4.5.2 Server code

The server program does not take any input. It waits for the connection from some client.
When connection is established, file is uploaded.

1 #include<stdio.h>

2 #include<sys/socket.h>

3 #include<netinet/in.h>

4

5 #define MAXLEN 100

6 #define PORT 12345
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7

8 int main(int argc,char **argv)

9 {

10 int s, connfd, len, n;

11 char recv[MAXLEN], recvaddr[16];

12 struct sockaddr_in saddr, caddr;

13 FILE *fp;

14

15 s=socket(AF_INET, SOCK_STREAM, 0);

16 if(s<0)

17 {

18 perror("socket");

19 exit(0);

20 }

21 saddr.sin_family=AF_INET;

22 saddr.sin_addr.s_addr=htonl(INADDR_ANY);

23 saddr.sin_port=htons(PORT);

24

25 if(bind(s,(struct sockaddr *)&saddr,sizeof(saddr))<0)

26 {

27 perror("bind");

28 exit(0);

29 }

30 listen(s,5);

31

32 while(1)

33 {

34 printf("Waiting for request...\n");

35 len=sizeof(struct sockaddr_in);

36 connfd=accept(s,(struct sockaddr*)&caddr,&len);

37 n=read(connfd,recv,MAXLEN-1);

38 recv[n]=’\0’;

39 fp=fopen(recv,"w");

40 write(connfd,"OK",2);

41 while((n=read(connfd,recv,MAXLEN-1))>0)

42 {

43 recv[n]=’\0’;

44 fwrite(recv,1,strlen(recv),fp);

45 write(connfd,"OK",2);

46 }

47 fclose(fp);

48 inet_ntop(AF_INET,&caddr.sin_addr,recvaddr,sizeof(recvaddr));

49 printf("File uploaded from %s, port=%d\n\n",recvaddr,ntohs(caddr.sin_p

50 close(connfd);

51 }

52 }

In both the programs, we have used htons(), inet pton(), inet ntop() function.
The first function htons (host to network short) is used to order the byte in a specific order
(network byte order). Other two functions convert the IP address from dotted decimal format
to network format (pton – presentation to network) and network format to presentation format
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(ntop – network to presentation).

4.5.3 Execution of the programs

Suppose, file names for client and server programs are client.c and server.c respectively. To
compile both the programs type

cc client.c -lsocket -lnsl -o client
cc server.c -lsocket -lnsl -o server

OR simply

cc client.c -o client
cc server.c -o server

If cc is unavailable, try the same with gcc. While compilation is complete, type ./server to
run the server program.

$ ./server

Waiting for request...

Next run the client program.

$ ./client 10.24.95.238 reco.txt

$

When the client program is finished, the output of the server is:

$ ./server

Waiting for request...

File uploaded from 10.24.105.3, port=32808

Waiting for request...

The server is again waiting for some other request. However, after serving a request, the
server prints the client’s IP address (10.24.105.3) and port number (32808). Both are not
supplied explicitly in the client program. The IP address is the client’s IP address and the
port number is chosen arbitrarily by the kernel. One may explicitly bind the client with some
port number, but this is generally avoided. It is suggested to provide this task to the kernel.

4.6 Error handling

Two problems are commonly encountered while the client and server are executed – connection
error and bind error.
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connection error

While connect() of client side returns -1, then connection error occurs. This means no
connection is established between client and server. Following are the probable reasons.

• socket() function with proper argument is not called before calling of connect().
Successfully called socket(...) function returns a socket handler, an non-negative
integer, which is passed to connect(). If a negative handler is passed to connect(),
then connection error appears.

• If wrong IP address and/or port number is mentioned, then connection can not be
established. The port number in a computer must be unique. The client has to mention
the same port during connection, on which the server is running.

• The server is not in the network or the server machine is not reachable from the client
machine.

• The server is not started before calling connect() in client side. That is, the server is
not ready to accept the connection request of client.

• The sockaddr in structure that holds the server address is not set properly. The IP
address and port number in this structure must be in specific format: we call the library
function htons (“host to network short”) to convert the binary port number, and we
call the library function inet pton (“presentation to numeric”) to convert the 4-byte
IP address (dotted decimal format) into proper format (See Section 1.2 and Section 4.4
for more details).

• The server machine filters the client machine’s IP address. In this situation, some
configuration of server machine is to be modified.

bind error

The bind error in server side is a most frequently faced problem. The bind() function returns
-1 on error. Following are the probable reasons.

• socket() function with proper argument is not called before calling of bind(). Suc-
cessfully called socket(...) function returns a socket handler, a non-negative integer,
which is passed to bind(). If a negative handler is passed to bind(), then also bind
error occures.

• The sockaddr in structure for the server is not set properly. That is, one or more
members of the structure are not filled up, or filled with some wrong values (Section
4.4).

• The port number is already in use. The port number is to be unique. The numbers
from 1 to 1023 are the well known ports, so these port numbers should not be used in
user program. For example, if the web server is installed in the server machine, and the
server program is trying with port number 80, then bind error will occur because port
80 is predefined to web server. Few ports are registered port – from 1024 to 49151. The
rest ports (49152 to 65535) are the dynamic or private ports. These ports can safely be
used in program.
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If the the problem is with the port number, then the following socket option can be set before
calling bind(). If the port number is unique in a program, then also bind error appear for
several reasons. The option SO REUSEADDR allows to reuse the port number.

int on = 1;

if (setsockopt(s, SOL SOCKET, SO REUSEADDR, &on, sizeof(on)) <

0) error

If the problem still remains, you would have to wait for four minutes (in the TIME WAIT
state of TCP) before using the address again (see RFC 1337 for details). However, Linux
uses 60 seconds, BSD implementations normally use around 30 seconds. It can be noted that
multiple TCP servers can never run on same IP address and port number. At least one of
them is to be different.

4.7 Exercise

The following are the exercise for this chapter.

1. Write a EchoClient and EchoServer program using TCP socket, where the server echoes
the message which is sent by the client in reverse case (that is, if client says Hello, then
server replies with hELLO), and also print the client’s IP address on server’s console.
Use separate machines on same network for client and server, if possible.

2. Write a simple ftp client and server program, where the client can upload as well as
download a file.

3. Modify the above ftp server code by setting proper options, so that port number can be
reused and bind error does not appear by saying “address already in use”.



Chapter 5

UDP socket

User Datagram Protocol or UDP is a transport layer protocol, which is much simpler than
TCP. The protocol is connectionless, unreliable, datagram protocol, quite unlike the connec-
tion oriented, reliable byte stream provided by TCP. There is no connection establishment
phase between client and server. Unlike TCP, UDP supports broadcasting and multicasting
facilities. The application designers consider UDP as an alternative of TCP, where the appli-
cation is a simple request-reply application. In this case, error detection is to be built into the
application to provide reliability. If the application requires broadcasting facility, then UDP
is the only option. However, for bulk data transfer, UDP is not a preferred transport proto-
col, because then congestion control and error control are to be built into application. DNS
(Domain Name System), NFS (Network File System), SNMP (Simple Network Management
Protocol) are the well-known applications developed using UDP.

5.1 Creating a UDP Socket Application

To design applications using UDP, UDP sockets in both ends, client and server, are to be
created. UDP sockets are also referred as datagram socket. There are many similarities of
creating a UDP socket with TCP socket. The sequence of function calling to prepare UDP
server and client are shown in Figure 5.1. Here, the socket() and bind() functions or
APIs are same with TCP. However the second argument of socket() is different with TCP.

int s;

s = socket(AF INET, SOCK DGRAM, 0);

One can compare UDP functions and client-server data exchange (Figure 5.1) with the same
of TCP (Figure 4.2). The client does not establish connection with server (Figure 5.1). A
UDP server does not have to listen for and accept client connections, and a UDP client does
not have to connect to a server. Instead, the client just sends a datagram to the server using
sendto() function, and server just calls the recvfrom() function to prepare to receive data
from a client and waits until data arrives from some client1. These two functions, defined in
<sys/socket.h> are described bellow.

1The connect() may also be used for UDP socket. But this is not similar with TCP connection and there
is no three-way handshaking. Instead, the kernel just records the IP address and port number, which are
included in the socket address structure posed to connect(), and returns immediately to the calling process.
However, overloading connect() function with capabilities of UDP socket is confusing.
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socket()

UDP Client

sendto()

reply (data)

close()

request (data)sendto()

bind()

socket()

UDP Server

from client

process request

waits for datagram

recvfrom()

recvfrom()

Figure 5.1: Socket functions and their sequence for UDP client and server
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int recvfrom(int s, void *buf, size_t len, int flags,

struct sockaddr *from, socklen_t *fromlen);

int sendto(int s, const void *buf, size_t len, int flags,

const struct sockaddr *to, socklen_t tolen);

Both return: number of bytes read or written if successful, -1 or error.

The first three arguments, s, buff , and nbytes are identical to the first three arguments for
read() and write(): socket descriptor, pointer to buffer to read into or write from, and
number of bytes to read or write. The flags argument is normally set to 0. The remaining
two arguments of recvfrom() are same with the last two arguments of accept(), and of
sendto() are same with the last two arguments of connect().

5.2 Day time UDP client-server

A day time client asks for the current time to the server, and server accordingly replies with
its current time. The application is developed using UDP socket. The codes for the client and
server are presented next. Note the difference of the following client and server from the TCP
client and TCP server of Section 4.5.

5.2.1 The client code

1 #include<sys/socket.h>

2 #include<arpa/inet.h>

3 #include<time.h>

4

5 #define PORT 1819

6

7 int main(int argc,char *argv[])

8 {

9 int s,n;

10 char buffer[100];

11 struct sockaddr_in saddr;

12

13 if(argc!=2)

14 {

15 printf("Usage::<%s> <Serv_IP>\n",argv[0]);

16 exit(0);

17 }

18 s=socket(AF_INET,SOCK_DGRAM,0);

19 if(s<0)

20 {

21 perror("socket");

22 exit(0);

23 }

24 saddr.sin_family=AF_INET;

25 saddr.sin_port=htons(PORT);

26 if(inet_pton(AF_INET,argv[1],&saddr.sin_addr)<=0)

27 {
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28 printf("Error. Invalid IP address\n");

29 exit(0);

30 }

31

32 strcpy(buffer,"time");

33 printf("Sending request to server %s\n",argv[1]);

34 if(sendto(s,buffer,strlen(buffer),0,(struct sockaddr *)&saddr,sizeof(saddr))<0)

35 {

36 perror("Send");

37 exit(0);

38 }

39 printf("Waiting for response...\n");

40 n=recvfrom(s,buffer,sizeof(buffer)-1,0,NULL,NULL);

41 if(n<0)

42 {

43 perror("Receive");

44 exit(0);

45 }

46 buffer[n]=0;

47 printf("Reply from server %s is %s\n",argv[1],buffer);

48

49 close(s);

50 return(0);

51 }

5.2.2 The server code

Following is the corresponding server code.

1 #include<sys/socket.h>

2 #include<arpa/inet.h>

3 #include<time.h>

4

5 #define PORT 1819

6

7 int main(void)

8 {

9 int s,len,n;

10 char buffer[100],recvaddr[16];

11 struct sockaddr_in saddr,caddr;

12 time_t ticks;

13

14 s=socket(AF_INET,SOCK_DGRAM,0);

15 if(s<0)

16 {

17 perror("socket");

18 exit(0);

19 }

20

21 saddr.sin_family=AF_INET;
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22 saddr.sin_port=htons(PORT);

23 saddr.sin_addr.s_addr=htonl(INADDR_ANY);

24 if(bind(s,(struct sockaddr *)&saddr,sizeof(saddr))<0)

25 {

26 perror("bind");

27 exit(0);

28 }

29 while(1)

30 {

31 printf("Waiting for request...\n");

32 len=sizeof(struct sockaddr_in);

33 n=recvfrom(s,buffer,sizeof(buffer)-1,0,(struct sockaddr *)&caddr,&len);

34 if(n<0)

35 {

36 perror("recv");

37 break;

38 }

39 buffer[n]=0;

40 inet_ntop(AF_INET,&caddr.sin_addr,recvaddr,sizeof(recvaddr));

41 printf("\nReceived request from %s\n",recvaddr);

42 if(strcasecmp(buffer,"time"))

43 {

44 strcpy(buffer,"Unknown request.");

45 printf("%s\n",buffer);

46 sendto(s,buffer,strlen(buffer),0,(struct sockaddr *)&caddr,len);

47 continue;

48 }

49 ticks=time(NULL);

50 snprintf(buffer,sizeof(buffer),"%24s",ctime(&ticks));

51 printf("Serving the request..\n");

52 if(sendto(s,buffer,strlen(buffer),0,(struct sockaddr *)&caddr,len)<0)

53 {

54 perror("send");

55 break;

56 }

57 else

58 printf("Request served..\n\n");

59 }

60 close(s);

61 return 0;

62 }

5.2.3 Execution of the codes

The programs can be compiled like before (by typing, cc < filename > -o < output file >).
Suppose, server and client are the executable files for server and client respectively.
Consider, server is running on a machine with IP address < 10.24.95.238 > and client is
running in any machine on the same network. Following is an example run of the application.

Run the server first.
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$ ./server

Waiting for request....

Now run the client.

$ ./client 10.24.95.238

Sending request to server 10.24.95.238

Waiting for response...

Reply from server 10.24.95.238 is Fri Jul 2 10:07:36 2010

5.3 Broadcasting in a network

Broadcasting is sometime required to locate some server in the network, when the specific
IP address of the server is unknown. Since point-to-point connection is established before
data transmission in TCP, broadcasting with TCP is not possible. But it works with UDP.
Suppose, a client wants to get the IP addresses of the time servers, if there is any, running on
the network. Then the client broadcasts a UDP request in the network. The request reaches
to all the computers, and the computers running the UDP time server respond. Eventually,
the client receives the response, and the servers’ IP addresses are also received. However, the
time servers are to run on the same port. The default port for the UDP time server is 13.

To broadcast a request in a specific network, broadcast address is required. The broadcast
address identifies the network with the net− id and subnet− id2. The host bits of the address
are all-1, which indicate the broadcasting. The broadcast address can easily be found by the
ifconfig utility in Unix/Linux.

The server program is the same as before. Few modifications are required in the client
program. Before broadcasting the request, the client has to tell the kernel explicitly regarding
broadcasting. This can be done by setting the SO BROADCAST socket option in the following
way:

int on = 1;

if (setsockopt(s, SOL SOCKET, SO BROADCAST, &on, sizeof(on)) <

0) error

After the broadcast, the client has to receive all the replies. So, a loop is required. The
client code to ask the day time is given next.

1 #include<sys/socket.h>

2 #include<arpa/inet.h>

3 #include<time.h>

4

5 #define PORT 1819

6

7 int main(int argc,char *argv[])

8 {

9 int s,n,on=1,len;

10 char buffer[100],recvaddr[16];

11 struct sockaddr_in saddr;

2Consult any text book on Computer Networks to understand the net id and subnet id.
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12 if(argc!=2)

13 {

14 printf("Usage::<%s> <Broadcast address>\n",argv[0]);

15 exit(0);

16 }

17 s=socket(AF_INET,SOCK_DGRAM,0);

18

19 if(setsockopt(s,SOL_SOCKET,SO_BROADCAST,&on,sizeof(on))<0)

20 {

21 perror("setsockopt");

22 exit(0);

23 }

24 saddr.sin_family=AF_INET;

25 saddr.sin_port=htons(PORT);

26 if(inet_pton(AF_INET,argv[1],&saddr.sin_addr)<=0)

27 {

28 printf("Error. Invalid IP address\n");

29 exit(0);

30 }

31

32 strcpy(buffer,"time");

33 if(sendto(s,buffer,strlen(buffer),0,(struct sockaddr *)&saddr,

sizeof(saddr))<0)

34 {

35 perror("Send");

36 exit(0);

37 }

38 while(1)

39 {

40 len=sizeof(struct sockaddr_in);

41 n=recvfrom(s,buffer,sizeof(buffer)-1,0,

(struct sockadd *)&saddr,&len);

42 if(n<0)

43 {

44 perror("Receive");

45 exit(0);

46 }

47 buffer[n]=0;

48 inet_ntop(AF_INET,&saddr.sin_addr,recvaddr,sizeof(recvaddr));

49 printf("Reply from server at:%s is %s\n",recvaddr,buffer);

50 }

51 close(s);

52 return(0);

53 }

Consider the broadcast address for a network is 10.24.255.255. Three time servers are run-
ning in the network on port 1819. The IP addresses of those servers are 10.24.1.1, 10.24.105.5
and 10.24.107.3. Following is the result of the run of client.

$ ./client 10.24.255.255

Reply from server 10.24.1.1 is Fri Jul 2 10:07:36 2010
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Reply from server 10.24.105.5 is Fri Jul 2 10:07:38 2010

Reply from server 10.24.107.3 is Fri Jul 2 10:08:06 2010

5.4 Excercise

1. Modify the day time client program, so that it can send the same request to multiple
servers. The client should not wait for the response of the a server, rather it should
continue to request to anothe server.

2. Write a EchoClient and EchoServer program using UDP socket, where the server echos
the message which is sent by the client in reverse case (that is, if client says Hello, then
server replies with hELLO), and also print the client’s IP address on server’s console.
Use separate machines on same network for client and server, if possible.



Chapter 6

Concurrent Server

Chapter 4 and Chapter 5 have described the creation of two types of servers – one is based
on TCP socket and another is UDP socket. Both types of servers process the clients’ request
one by one. If the number of client per server is 1, then these types of servers perform nicely.
However, in most of the cases the number clients is more than 1. In this situation also the
server may perform well if the clients make request rarely. But if the number of clients is very
high and/or the clients make request frequently, the clients can not access the server parallely,
and as a result response time of the clients is increased.

The first class of server is called iterative server, i.e. it iterates through each client and
serves one request at a time. Alternatively, a server can handle multiple clients at the same
time in parallel, and this type of server is called a concurrent server. By concurrent server, we
normally mean TCP concurrent server. However, UDP concurrent server can also be designed.

6.1 Writing Concurrent Server

The simplest way to write concurrent server in Unix is to fork() a child process to handle
each client. The fork() is a system call or function that creates a copy of the process that
has issued the fork(). The function is called once, but returns twice since it results in two
processes from one. If return value is 0, the process is child; if some positive integer is returned,
the process is parent.

We next present the outline of the concurrent server. When a connection is established,
accept() returns a connected socket (say, connfd), the server calls fork(), and then child
process services the client using connfd and the parent process waits for another connection
(on listenfd, the listening socket). The parent closes the connected socket (connfd) since
the child handles the new client. Outline of the concurrent server is given below.

int main(int argc, char ** argv)

{

pid_t pid;

int listenfd, connfd;

listenfd = socket(...);

.

.
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Client Server

listening socket

Connection request

Figure 6.1: A client just requests the server for connection.

.

bind(listenfd,...);

listen(listenfd,...);

while(1)

{

connfd = accept(listenfd,...);

pid = fork();

if(pid == 0) /* child code */

{

close(listenfd);

***process the request***

close(connfd);

exit(0);

}

else /* parent code */

close(connfd);

}

}

The scenario of handling multiple clients is shown in Figure 6.1, Figure 6.2 and Figure 6.3.
The server is always ready to accept new connection request. While a connection request is
accepted, a child is forked to service the request. The parent server then again becomes ready
to accept the new connection request by closing the connected socket, as the connected socket
is now dealt by the child.

The listening socket must be distinguished from the connected socket on the server host.
Although both sockets use the same local port on the server machine, they are indicated
by distinct socket descriptors, returned server’s call of functions socket() and accept()

respectively for listening and connected sockets.

6.2 Concurrent server with thread

Traditionally, a concurrent TCP server calls fork to spawn a child to handle each client. This
allows the server to handle numerous clients at the same time, one client per process. The
only limit on the number of clients is the OS limit on the number of child processes for the
user ID under which the server is running.
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Client Server

and data transfer
Connection listening socket

connected socket

fork ( )

Server
(child)

(parent)

Figure 6.2: The client is connected with newly created server. The parent server is ready to
accept new request.

Client Server

and data transfer
Connection listening socket

connected socket

fork ( )

Server
(child)

(parent)

Client
(New)

Connection request

Figure 6.3: A new client requests the server (parent) for connection.
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The problem with these concurrent servers is the amount of CPU time it takes to fork a
child for each client. Years ago (the late 1980s), when a busy server handled hundreds or
perhaps even a few thousand clients per day, this was acceptable. But the explosion of the
Web has changed this attitude. Busy Web servers measure the number of TCP connections
per day in the millions. This is for an individual host, and the busiest sites run multiple hosts,
distributing the load among the hosts.

One way to speed up the server is to use thread, if the server machine supports, instead
of using child process while creating concurrent server. The one-thread-per-client version is
many times faster than the one-child-per-client version. Following two functions are needed
in the server of thread version.

#include<pthread.h>

int pthread_create(pthread_t *thread, pthread_attr_t *attr,

void * (*start_routine)(void *), void *arg);

Returns: 0 on success, non-zero error code on error.

The pthread create creates a new thread of control that executes concurrently with the
calling thread. Each thread within a process is identified by a thread ID, whose datatype
is pthread t (often an unsigned int). On successful creation of a new thread, its ID
is returned through the pointer thread. The new thread applies the function start routine

passing it arg as first argument. The new thread terminates either explicitly, by calling
pthread exit() (a function that is used to terminate the calling thread), or implicitly, by
finishing the execution of start routine function. The attr argument specifies thread attributes
to be applied to the new thread. We set it as NULL, in which case default attributes are used.

#include <pthread.h>

int pthread_detach(pthread_t th);

Returns: 0 on success, non-zero error code on error.

A thread can be detached from the main thread. A detached thread is like a daemon process:
when it terminates all its resources are released an we can not wait for it to terminate. This
function is commonly called by the thread that wants to detach itself, as in

pthread detach(pthread self());

Here, pthread self() returns the ID of the thread itself.1

The basic functions (APIs) of designing TCP concurrent server using thread and using fork
are the same. Only difference, from programming point of view, is, instead of creating one-
child per client, a new thread is created to serve the child. The outline of such server is noted
next.

int main(int argc, char **argv)

{

1pthread join(pthread t th, void **thread return) is another basic thread function that sus-
pends the execution of the calling thread until the thread identified by th terminates, either by calling
pthread exit or by being cancelled. This function, if used, can forcefully make a server as a sequential
or iterative server.
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pthread_t th;

int listenfd, connfd;

listenfd = socket(...);

.

.

.

bind(listenfd,...);

listen(listenfd,...);

for( ; ; )

{

connfd = accept(listenfd,...);

pthread_create(&tid, NULL, &func, (void *) &connfd);

/* create thread instead of forking */

}

}

void *func(void *connfd)

{

pthread_detach(pthread_self()); /* equivalent to closing listening socket */

***process the request***

close(*((int*)connfd));

}

The program can be compiled in the following way.

cc server.c -lthread -o server

OR

cc server.c -o server

6.3 Concurrent UDP server

Most UDP servers are iterative: the server waits for a client request, reads the request,
processes the request, sends back the reply, and then waits for the next client request. But
when the processing of the client takes a long time, some form of concurrency is desired.

With TCP it is simple to just create a new child/thread and let the child/thread handle the
new client. What simplifies this server concurrency when TCP is being is that every client
connection is unique: the TCP socket pair (listening socket, connected socket) is unique for
every connection. But in UDP, simple fork is not sufficient; we have to deal with two types of
servers.

First one is a simple UDP server that reads a client request, sends a reply, and is then
finished with the client. In this scenario the server that reads the client request can fork a
child and let it handle the request. The child then sends its reply directly to the client.
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first datagram from
client

first reply from server;
all remaining datagrams
between client and server

(parent)

(child)

port 69

port 12345

Client

Server

Server

fork

Creates socket, binds well−known port (69),
recvfrom, blocks until client request arrives.
fork, then another recvfrom, ...

Creates new request, binds a dynamic port
(say 12345), process client’s request, exchange
additional datagrams with client on new socket   

Figure 6.4: Processes involved in stand-alone concurrent UDP server

Second one is a UDP server that exchanges multiple datagrams with the client. While
the server receives the first datagram (request), a child is forked to service the client. The
problem is that the only port number is known to client, on which the server is running. The
client sends the first datagram of its request to that port, but how does the server distinguish
between subsequent datagrams from that client, and new request? The typical solution is for
the server to create a new socket for each client, bind a dynamic port to that socket and use
that socket for all its replies. This requires that the client looks at the port number of the
server’s first reply and send subsequent datagrams for this request to that port.

Second type of UDP server can handle concurrency in a better way. The scenario is shown in
Figure 6.4. An example of such server is TFTP (Trivial File Transfer Protocol). To transfer a
file using TFTP normally requires many datagrams, because the protocol sends only 512 bytes
per datagram. The client sends a datagram to the server’s well known port (69) specifying the
file to send or receive. The server reads the request but sends its reply from another socket
that it creates and binds to a dynamic port. All subsequent datagrams between the client
and server for this file use the new socket. This allows the main TFTP server to continue to
handle other client requests that arrive at port 69.

6.4 Exercise

1. Write a concurrent version of TCP echo server by forking a child per client, where the
server echos the message which is sent by the client in reverse case (that is, if client says
Hello, then server replies with hELLO).

2. Write the above program using thread.

3. Write the udp concurrent server - TFTP server and corresponding client.


