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Abstract 4 

Motivated by intriguing response of free-standing slender structures, the study begins with an in-depth 5 
examination of their free-vibration characteristics particularly for those with eccentricities. Overturning and 6 
rocking spectra are then constructed and interpreted for both positive and negative eccentricities. These spectra 7 
offer valuable insights into various phenomena, including overturning modes, the implications of shaking 8 
direction, and the interplay between size and slenderness. The research further develops and presents a 9 
straightforward framework, introducing a novel stability coefficient spectrum and a rocking spectrum in a 10 
dimensionless and orientationless format. Despite the existence of bifurcation and fractal overturning boundaries 11 
in the long-term response, the simplified spectra originally developed for harmonic base excitation prove effective 12 
in the context of seismic safety to serve for both force-based and displacement-based design, at least in the near-13 
field. Consequently, the proposed methodology appears sound for the design of free-standing or rocking-isolated 14 
slender systems, especially in light of the deficiencies in current design practices.  15 

1.0  Introduction 16 

Between the 5th and 8th centuries, several earthquakes have led to the toppling of ancient statues and monuments. 17 

On the other hand, remarkable seismic stability has been in evidence by many slender structures built between 18 

565 B.C. and 141 A.D. (Thomas et al., 1963; Espinosa et al., 1977; Makris and Kampas, 2016). Similar contrasting 19 

observations have been made for various slender systems including towers, elevated water tanks, radioactive 20 

shields, and household or hospital equipment during numerous seismic events, for example, the 1906 San 21 

Francisco earthquake, the 1952 Arvin-Tehachapi earthquake, the 1960 Chile earthquake, and the 1971 San 22 

Fernando earthquake. Also, art objects were overturned during the 1989 Loma Prieta earthquake in California 23 

(Nigbor et al., 1994), whereas ‘some buildings and elevated highways’ tilted/collapsed to one side as ‘rigid blocks’ 24 

after the 1985 Mexico City and the 1995 Kobe earthquakes, (Plaut et al., 1996). Therefore, it is essential to delve 25 

into the intricate dynamics that underpin the remarkable resilience of slender structures—ranging from 26 

unanchored electrical equipment and nuclear facilities to monuments—that, are often eccentric. 27 

In the area of slender free-standing systems, a number of researchers, following the seminal work of 28 

Housner (1963), have studied behaviour of free-standing symmetric rigid blocks. The highly nonlinear governing 29 
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equation of motion is known to change with the sense of angle of rotation, with a distinct reduction (discontinuity) 30 

in tilting velocity after each impact owing to energy loss. Building upon Housner’s insights, numerous studies 31 

have rigorously examined the response of free-standing rigid blocks to various excitation types, including (i) half-32 

sine pulses (Housner, 1963; Makris and Roussos, 1998; Makris and Roussos, 2000), (ii) one-sine pulses (Makris 33 

and Roussos, 1998; Makris and Roussos, 2000; Zhang and Makris, 2001), (iii) mathematical wavelets (Zhang and 34 

Makris, 2001; Vassiliou and Makris, 2012; Makris and Vassiliou, 2012; Dimitrakopoulos and DeJong, 2012a; 35 

Makris, 2014a) and (iv) real ground motions (e.g., Yim et al., 1980; Makris and Roussos, 1998; Makris and 36 

Roussos, 2000;  Zhang and Makris, 2001; Makris and Kampas, 2016). These investigations have shown that 37 

overturning might occur in (a) free vibration period after the expiration of the excitation and not essentially at the 38 

instant pulse expires, (b) more than one mode, characterized by the number of impacts (Makris and Roussos, 39 

2000; Zhang and Makris, 2001; Vassiliou and Makris, 2012; Makris and Vassiliou, 2012; Dimitrakopoulos and 40 

DeJong, 2012b; Makris, 2014b). 41 

The inherent nonlinearity of the problem has prompted researchers to study the long-term behaviour 42 

(e.g., Spanos and Koh, 1984; Hogan,1989; Tso and Wong, 1989a, 1989b; Hogan, 1990; Yim and Lim,1991a; 43 

Hogan, 1994; Ageno and Sinopoli, 2005; Jeong and Yang, 2012) and revealed the sensitivity of response to initial 44 

conditions, excitation characteristics, and block geometry, especially in three-dimension (Pradhan et al., 2022). 45 

These studies under harmonic base excitation have (a) identified the safe and unsafe zones per stability analysis 46 

(Spanos and Koh, 1984), (b) proposed the concept of stability boundaries (Hogan, 1989; Hogan, 1990), (c) 47 

introduced the condition of heteroclinic bifurcation (Hogan, 1989), and (d) found the appearance of the chaos and 48 

fractal basin boundaries (Bruhn and Koch, 1991; Yim and Lim, 1991a; Yim and Lim, 1991b; Ageno and Sinopoli, 49 

2005). Researchers (Iyengar and Manohar, 1991; Lin and Yim, 1996a; Lin and Yim, 1996b) have also confirmed 50 

these findings for deterministic and stochastic excitation. 51 

Although the studies on the dynamics of rigid blocks are numerous, a few have focused on the 52 

asymmetric systems, which are crucial for practical applications (Pradhan and Roy, 2023; 2024). Physically, the 53 

mass moment of inertia of a block about the point of impact differs depending on whether the block impacts at 54 

one corner or the other, and this can lead to a significant change in response. Limited works on eccentric systems 55 

have included (a) those representing statue-pedestal and hospital equipment (e.g., Wittich et al., 2016; Saifullah 56 

and Wittich, 2021), (b) earthquake-like base excitations (e.g., Shi et al., 1996; Contento and Di Egidio, 2009; Di 57 

Egidio and Contento, 2009; Di Egidio and Contento, 2010) and seismic fragility constructions for rigid blocks 58 

and natural rock bodies (e.g., Purvance 2005; Purvance et al., 2008a; Purvance et al., 2008b; Veeraraghavan, 59 



 

2015). The distinction in behaviour between symmetric and asymmetric blocks is apparent for both short and 60 

long-term responses, even for small eccentricities (e.g., Plaut et al., 1996; Zulli et al., 2012). These have also been 61 

confirmed by experimental (Wittich and Hutchinson, 2015; Wittich and Hutchinson, 2017; Arredondo et al., 2019) 62 

and finite-element based investigations (e.g., Al Abadi et al., 2019).  63 

Despite continued research studies, design guidelines for free-standing rigid blocks (even for symmetric 64 

ones) are yet premature. Based on the ‘superficial similarities’, Priestley et al. (1978) modelled a rocking block 65 

as a single-degree-of-freedom (SDoF) oscillator with constant damping, whose period depends on the amplitude 66 

of rocking and this serves as the basis of the existing practice (ASCE 43-05, FEMA P-58-1). Subsequent works 67 

highlighting the fundamental flaws in this approach recommended to abandon the codified procedure (Makris and 68 

Konstantinidis, 2003), and introduced the concept of rocking spectrum. In the elaborate work of Dar et al. (2016), 69 

various shortcomings of the design procedure in ASCE 43-05 are further elucidated, and recommended for 70 

rigourous nonlinear dynamic analysis. Despite these authoritative works, the codified guidelines continue to lean 71 

on the ‘flawed’ methodology. 72 

Against this backdrop, the present undertaking begins to develop an in-depth understanding on the 73 

dynamics of free-standing rigid systems with eccentricities, through comprehensive case studies under simple 74 

trigonometric pulses. Recognizing that a block may overturn with multiple impacts during real seismic events, the 75 

research explores the long-term response to harmonic pulses. The study ultimately introduces a dual-framework, 76 

combining a newly proposed stability coefficient spectrum with a novel rocking spectrum, which may respectively 77 

be used to estimate intensity of seismic shaking for an astute choice of the factor of safety and the corresponding 78 

rotation demand. 79 

2.0 Research Significance 80 

The inherent seismic stability of free-standing columns and blocks, as demonstrated in the constructions from 81 

‘more than 2.5 millennia ago by the builders of archaic and classical temples’, motivates the development of an 82 

appropriate design framework and the adoption of such mechanism to enhance seismic resilience. By 83 

systematically addressing the complex dynamics of eccentric systems—often overlooked in existing studies—this 84 

research achieves new insights into the behaviour of these structures under seismic excitation. It introduces a 85 

novel dual-framework combining a stability coefficient spectrum and a rocking spectrum, offering a more accurate 86 

approach to estimating seismic shaking intensity and corresponding rotation demands. This methodology can 87 

serve the requirements of both force-based and displacement-based design strategies, ultimately contributing to 88 

more resilient infrastructure. Therefore, this investigation, by advancing the design of free-standing slender 89 



 

structures, has the potential to significantly enhance seismic protection of infrastructure, especially monuments, 90 

bridges supported by rocking piers (Makris, 2014a; Makris and Vassiliou, 2014). 91 

3.0 General Specifications of Structures Blocks in 2D 92 

The dynamics of free-standing rigid blocks with eccentricity, as shown in Figure 1a, involves several key 93 

phenomena. For a base excitation acting rightward, a minimum amplitude of base excitation (𝑢̈𝑔𝑥(t) ≥94 

𝑔 tan 𝛼1 ; 𝑔 is the gravitational acceleration) is required to uplift. Once rocking commences, for a strong excitation 95 

shown, the block initially rotates counter-clockwise (i.e., taken θ(𝑡) < 0) and may overturn without impact about 96 

the pivot point B. If the excitation is not strong enough to cause overturning, the block rotates in the opposite 97 

(clockwise) sense, with the first impact occurring at the pivot point Bʹ. This rocking motion continues until the 98 

block overturns or returns to its initial state following free vibration. The governing equations of motion, which 99 

describe this dynamic behaviour, are depicted below, assuming sufficient friction to prevent sliding (e.g., Yim et 100 

al., 1980; Makris and Roussos, 2000; Kounadis et al., 2013; Veeraraghavan, 2015) and allowing for impacts at 101 

pivots B and Bʹ. In fact, it has been shown (Di Egidio and Contento, 2009) that there exists a limiting friction 102 

primarily dependent on the slenderness beyond which sliding may eventually be prevented for seismic excitation. 103 

3.1 Equations of motion 104 

Consider a rigid block with an eccentricity that is supported by a horizontal foundation. Centre of mass, i.e., CM 105 

(denoted as Gs) of the block, situated at a vertical distance of h from the base or foundation, does not align with 106 

the geometric centre (denoted as G). The width of the block is 2𝑏 = 𝑏1 + 𝑏2, where 𝑏1 and 𝑏2 are the semi-bases 107 

(as shown in Figure 1a). 108 

For the block on horizontal base, the equation of motion corresponding to counter-clockwise rotation 109 

(θ(t) < 0) may be expressed as follows:  110 

(𝐼𝐶𝑀 + 𝑚𝑅1
2)𝜃̈(𝑡) = −𝑚𝑔𝑅1 sin(−𝛼1 − 𝜃(𝑡)) −

𝑢̈𝑔𝑥(𝑡)

𝑔
𝑚𝑔𝑅1cos (−𝛼1 − 𝜃(𝑡))...(1a) 111 

On the other hand, for the clockwise rotation (θ(t) > 0), the equation of motion for the rocking block takes the 112 

following form: 113 

(𝐼𝐶𝑀 + 𝑚𝑅2
2)𝜃̈(𝑡) = −𝑚𝑔𝑅2 sin(𝛼2 − 𝜃(𝑡)) −

𝑢̈𝑔𝑥(𝑡)

𝑔
𝑚𝑔𝑅2cos (𝛼2 − 𝜃(𝑡))…(1b) 114 



 

in which m is the block mass, the semi diagonals 𝑅1(= √𝑏1
2 + ℎ2) and 𝑅2(= √𝑏2

2 + ℎ2) represent size; 𝛼1 =115 

tan−1(
𝑏1

ℎ
) and 𝛼2 = tan−1(

𝑏2

ℎ
) are the measures of the slenderness. ICM is the mass moment of inertia about B and 116 

may be expressed as 117 

𝐼𝐶𝑀 = 𝑚[
1

3
(𝑏2 + ℎ2) + (𝑏 − 𝑏1)2] ...(1c) 118 

Equations (1a) and (1b) can be expressed as follows in compact form (Wittich and Hutchinson, 2015): 119 

(𝐼𝐶𝑀 + 𝑚𝑅𝑖
2)𝜃̈(𝑡) = −𝑚𝑔𝑅𝑖 sin (𝛼𝑖𝑠𝑖𝑔𝑛(𝜃(𝑡)) − 𝜃(𝑡)) −

𝑢̈𝑔𝑥(𝑡)

𝑔
𝑚𝑔𝑅𝑖cos (𝛼𝑖𝑠𝑖𝑔𝑛(𝜃(𝑡)) − 𝜃(𝑡)) 120 

                                                                                                                                                         …(1) in which 121 

the subscript 𝑖 = 1 or 2 respectively indicates block rotation in the negative (about B) and positive (about Bʹ) 122 

directions, and sign(θ(t)) corresponds to θ(t) > 0 or θ(t) < 0 for 1 or -1, respectively. Assuming a seamless rotation 123 

between two pivot points, B and Bʹ, without bouncing, the coefficient of restitution, η, using the principle of 124 

momentum conservation, can be estimated as follows (Wittich and Hutchinson, 2015). 125 

𝜂𝑖 =
1

(𝐼𝐶𝑀+𝑚𝑅𝑖
2)

[(𝐼𝐶𝑀 + 𝑚𝑅𝑗
2) − 𝑚(𝑏1 + 𝑏2)𝑅𝑗 sin 𝛼𝑗]   …(2) 126 

where 𝑖 = 1, 𝑗 = 2  represent an impact at point Bʹ, and 𝑖 = 2, 𝑗 = 1 correspond to that at B.  127 

For reference symmetric block (Figure 1b) with base dimension 𝑏 = 2𝑏 (𝑏1 = 𝑏2) and 𝛼1= 𝛼2 = α = b/h, 128 

equations (1) and (2) are reduced as under. 129 

𝜃̈(𝑡) = −𝑝2 {sin[𝛼𝑠𝑖𝑔𝑛(𝜃(𝑡)) − 𝜃(𝑡)] +
𝑢̈𝑔(𝑡)

𝑔
cos[𝛼𝑠𝑖𝑔𝑛(𝜃(𝑡)) − 𝜃(𝑡)]}… (3a) 130 

𝜂 = (1 − 1.5𝑠𝑖𝑛2𝛼)…(3b) 131 

in which frequency parameter p =√3𝑔 4𝑅⁄  where R: size, and 𝛼: slenderness of the block. We have solved the 132 

equation of motion independent by using the ‘event function’ (Vassiliou and Makris, 2011; Makris and Vassiliou, 133 

2012) (this function detects events such as impact while solving equations, and updates the post-impact velocity 134 

by multiplying the coefficient of restitution with the pre-impact velocity) within the Ode45 solver (Matlab V.9.5, 135 

2018). 136 



 

4.0  Response of In-plane Mass-eccentric Structures 137 

To examine the dynamics of free-standing rigid blocks, prima facie, a symmetric block of dimensions 138 

0.5m × 2.5m is chosen as reference, and twelve models with in-plane eccentricities are created. These are shown 139 

in Figure 2 in the schematic form for e = 0.001, 0.002, 0.005, 0.025, 0.05, and 0.1 metre. These systems 140 

with negative eccentricities are respectively marked as S1, S2, S3, S4, S5, and S6, whereas the corresponding positive 141 

counterparts are denoted S1ʹ, S2ʹ, S3ʹ, S4ʹ, S5ʹ, and S6ʹ, respectively. For Gs located to the right of G, the eccentricity 142 

is treated positive, when the excitation initially acts to the right. 143 

4.1  Basic observations 144 

For preliminary understanding, response histories are studied by varying amplitudes (ap) of a one-sine pulse of 145 

constant frequency, 𝜔𝑝 = 6 rad/s. Figure 3 shows the response histories for each eccentric model, corresponding 146 

to the excitation amplitudes of 2.60 m/s2, 3.50 m/s2, 4.25 m/s2, 4.60 m/s2, 6.20 m/s2 and 8.50 m/s2, respectively 147 

(Figure 3a to Figure 3f). A close scrutiny to the response histories may be enlightening to appreciate the 148 

implications of eccentricity. For instance, ap = 2.60 m/s2, (Figure 3a) cannot initiate uplift or rocking in S1ʹ, 149 

whereas the companion system with negative eccentricity, i.e., S1 overturns with two impacts (Mode 2, marked as 150 

M2). Interestingly, for the same ap, S2 overturns with two impacts (M2), whereas S2ʹ survives. For the same intensity 151 

S3ʹ rocks; however, S3 overturns following one impact (Mode 1, marked as M1). It is noteworthy that the other 152 

selected systems, including those with smaller eccentricities, overturn with one impact (M1).  153 

The effect of ap may be further appreciated. For ap = 3.50 m/s2, S1 and S1ʹ overturn without impact (Mode 154 

0, denoted as M0) and with one impact (M1), respectively, whereas S2ʹ and S3ʹ overturn with one impact (M1), in 155 

contrast to the responses for ap = 2.60 m/s2 depicted above. For small eccentricities, the response scenario, for 156 

selected other values of amplitudes, are similar to those for ap = 2.60 m/s2. With increase of amplitude, overturning 157 

mode may alter and no systematic trend appears. Strikingly, S2 survives for ap = 4.60 m/s2, while the same 158 

overturns at a lower intensity (for ap = 3.50 m/s2 and 4.25 m/s2). At a very high intensity (ap = 8.50 m/s2), all 159 

systems are observed to overturn without impact (M0) (Figure 3f).  160 

The limited studies reveal that, for one-sine pulse, the response of eccentric systems is sensitive to both 161 

characteristics of eccentricity and the direction of excitation. The overturning phenomenon may be abruptly 162 

influenced by the governing modes of overturning, denoted as M0, M1 and M2, which correspond to the number 163 

of impacts (zero, one or two) before overturning occurs. Notably, planar blocks with symmetry typically overturn 164 



 

with either one impact or no impact under a one-sine pulse (e.g., Makris and Kampas, 2016). The results indicate 165 

that the dynamics of eccentric blocks can differ significantly from their symmetric counterparts, suggesting that 166 

the findings from simplified symmetric systems may not be directly applicable to many real-world free-standing 167 

systems. 168 

4.2  Observations through free vibration characteristics 169 

It has been previously concluded that planar symmetric blocks subjected to one or half-sine pulse (Makris and 170 

Roussos, 2000; Zhang and Makris, 2001; Konstantinidis and Makris, 2007, Dimitrakopoulos and Dejong, 2012a; 171 

Dimitrakopoulos and Dejong, 2012b; Dejong and Dimitrakopoulos, 2014) generally overturn in the free vibration 172 

regime upon the expiration of the pulse. Hence, it is of interest to examine the same for eccentric blocks. To this 173 

end, the response of a free-standing rigid block (2b = 0.5m, 2h = 2.5m; e = - 0.025m) to a one-sine pulse with ωp 174 

= 7.6 rad/s, as shown in Figure 4, is studied. Representative response histories are plotted for different excitation 175 

amplitudes corresponding to 2.70 m/s2, 3.10 m/s2, and 6.89 m/s2, respectively. The results reveal that the in-plane 176 

eccentric block may overturn, either with (two/one) or without impacts, in the free-vibration regime after the 177 

completion of the forced vibration. This motivates to systematically study the overturning condition of eccentric 178 

rigid blocks using free-vibration characteristics. 179 

Against this backdrop, free-vibration is studied by varying the initial conditions (𝜃0, 𝜃̇0) for selected 180 

systems, viz., S1, S2, S3, and S4, and the domains of rocking and overturning in different modes are identified. The 181 

domains are graphically presented in Figure 5 in terms of nondimensional initial conditions, i.e., (𝜃0/α, 𝜃̇0/𝑝), in 182 

which α (= 0.1978 rad) and p (= 2.4024 rad/s) correspond to the related symmetric system. The results show that, 183 

for negative 𝜃0, two overturning modes, viz., M0, and M2 appear for large eccentric systems, while M1 appears 184 

with M2 as the eccentricity reduces. This zone of M2 is eventually eliminated with further reduction of eccentricity. 185 

On the other hand, for positive 𝜃0, only M0 and M1 regulate the overturning phenomena. Hence, the rocking zone 186 

and overturning characteristics depend on the initial conditions and the magnitudes of eccentricity. The similarity 187 

of the trends to those in the preceding section, suggests that the free-vibration analysis with the initial state 188 

variables, corresponding to those at the end of the forced vibration phase, can provide important insight into the 189 

stability of block.  190 

With this understanding on the dynamics of eccentric systems, the stability and performance of the free-191 

standing structures subjected to coherent pulse are investigated in the following section.  192 



 

4.3  Observations through forced vibration 193 

The preceding results suggest that the response of the blocks is sensitive to various factors, including the 194 

eccentricities, and direction of excitation and its characteristics etc. The highly nonlinear behaviour is therefore 195 

further examined through overturning and rocking spectra, which are widely used for symmetric planar systems. 196 

These are then oriented to design goal. 197 

4.3.1  Overturning spectra and implications 198 

In this part, the responses to a single sine pulse are computed for systems S1 through S6 (and S1ʹ through S6ʹ). The 199 

response is plotted in Figure 6, with the excitation parameters normalized by the characteristic parameters of the 200 

reference symmetric block, viz., α and p. These describe the stability of the blocks in terms of its intensity and 201 

frequency of the forcing function. In the resulting plots, known as overturning spectra, the responses of the 202 

companion systems with equal eccentricity but in opposite sense (with respect to the direction of excitation), for 203 

example, S1 and S1ʹ, are also superimposed for comparison. 204 

Figure 6a shows that for S1ʹ, overturning occurs either with one impact (M1) or no impact (M0), while the 205 

same for S1 might occur following two impacts (M2) and no impact (M0). The uplift strength of the blocks S1 and 206 

S1ʹ differs because of the variations in 𝛼1. Notably, the block corresponding to S1 demonstrates greater stability 207 

than S1ʹ at higher excitation frequencies (large columns). A look at the responses to the systems with lesser 208 

eccentricities, viz., S2 and S2ʹ reveals all three overturning modes (M0, M1, M2) for S2, whereas, in contrast, S2ʹ 209 

shows two possible modes (M0, M1) like S1ʹ. An interesting observation is that the one-impact region (M1) appears 210 

within the two-impact region (M2) for S2, indicating a shift of overturning mode within the range of amplitude of 211 

overturning itself. A close scrutiny to the results of the selected cases uncovers the following.  212 

• The systems with large negative eccentricity may overturn in the M0 and M2 modes. However, M1 appears 213 

to regulate partly within the M2 region for systems with moderate negative eccentricity. As the 214 

eccentricity continues to decrease, the area covered by M1 gradually expands, effectively overlapping 215 

and eventually suppressing the M2 region.   216 

• The response of systems with positive eccentricity is, however, relatively straightforward and follows a 217 

pattern as that of a symmetric system even though the overturning occurs at a lower amplitude.  218 



 

• The observed jump to a higher acceleration for overturning suggests a transition to a different overturning 219 

mode, and may be attributed to the bifurcation phenomenon in the nonlinear system. For the base 220 

excitation in the form of a one-sine pulse, M2 appears only in systems with negative eccentricity.  221 

Physically, when a block is uplifted, its rotational inertia has a feeble effect for long-duration pulses because the 222 

block rotates slowly. Conversely, rotational inertia can play a significant role during short-duration pulses. Since 223 

rotational inertia is proportional to the square of the size, stability may be enhanced for high-frequency pulses. As 224 

such, the results indicate, for blocks with eccentricity, that ‘the increase in the column size can not only offset the 225 

anticipated decrease in the column stability due to the increase of slenderness, but on some occasions, it may 226 

appreciably increase its stability’. This was indeed confirmed by Makris and Kampas (2016) for blocks with 227 

symmetry. For a simpler realization, assuming that the limiting condition for overturning is attained as the centre 228 

of mass is just vertically above the point of impact, by limit equilibrium, the displacement capacity can be 229 

expressed as follows. 230 

umax. = R1sinα1 = b1 overturning about Pivot B             …(4a) 231 

umaxʹ = R2sinα2 = b2 overturning about Pivot Bʹ             …(4b) 232 

These values, in the simplest form, represent that the capacity of the free-standing block is a combination 233 

of size, slenderness which in turn, depending on the pivot, changes with eccentricity. It may also be inferred, for 234 

a rightward quasi-static excitation (as chosen for overturning spectra in Figure 6), capacity for overturning with 235 

zero impact, i.e., about Pivot B is greater for positive eccentricity than that for negative one. Accordingly, for 236 

overturning without impact, amplitude of excitation is expected to be greater for positive eccentricity. This is 237 

evident from the overturning spectra in Figure 6. These two capacities (as in equations (4a) and (4b)) tend to be 238 

identical for e  0, resulting in a common value. The free-vibration response characteristics in terms of positive 239 

and negative values of 𝜃0, as discussed already, complement these broad trends. 240 

4.3.2  Rocking spectra and implications 241 

The preceding results reveal the complex characteristics related to the stability of a free-standing slender system. 242 

From design perspectives, even when a block can sustain a given shaking, it may also be important to regulate the 243 

amplitude of the rocking 𝜃𝑚𝑎𝑥. (rotation demand). This can be obtained from the rocking spectrum that presents 244 

the peak rotation (or angular velocity) as a function of the period of the block for a specified value of slenderness 245 

(Makris and Konstantinidis, 2003). As such, rocking spectra, established for symmetric blocks per nonlinear 246 



 

response history analysis in the literature (e.g., Makris and Konstantinidis, 2003; Dimitrakopoulos and DeJong, 247 

2012a), are useful and are viewed as “an additional measure of earthquake intensity” (Makris and Kampas, 2016). 248 

Usually, given an excitation, the rocking spectra is presented as a function of the ‘period’ 𝑇 = 2𝜋
𝑝⁄  for a specified 249 

slenderness α.  250 

Taking ap = 8.00 m/s2 and ωp = 12.00 rad/s, the rocking spectra for S1 to S5 and S1ʹ to S5ʹ are constructed 251 

for two selected values of α (= 0.1692 rad and 0.2308 rad) of reference symmetric systems. These are presented 252 

in Figure 7. In general, the rotations of rocking blocks asymptotically decrease with the increase of 𝑇 that 253 

corresponds to increasing size of the block. The results also show that at 2π/p = 3.2, all blocks overturn for α = 254 

0.1692 rad; however, those other than S1ʹ, S2ʹ and S3ʹ remain stable when α = 0.2308 rad, indicating that the stability 255 

is dependent on both size, slenderness and sense of eccentricities. These are indeed implicit in equation (4).  256 

It may be noted that the format for the rocking spectrum shown in Figure 7, as a function of 𝑇 for a 257 

specified value of slenderness α, is standard and commonly used. To improve upon, the rocking spectra for a 258 

selected excitation are reconstructed in a more compact form in Figure 8. This includes blocks with varying 259 

slenderness and size, with rotation magnitude represented by different colours. The zones of overturning are also 260 

superimposed, providing a consolidated representation of the entire phenomenon of free-standing blocks. The 261 

results suggest that, the ‘competition’ between size and slenderness to regulate overturning is predominant for 262 

blocks with relatively small size. However, as block size increases, rocking overrides overturning, yet both factors 263 

continue to influence the maximum rotation. A comparison of the spectra for different eccentricities reveals the 264 

occurrence of various overturning modes, similar to those observed in section 4.3.1. 265 

From the design and performance assessment perspectives, the acceleration required to prevent 266 

overturning, along with the estimate of maximum rotation, are crucial. The paper henceforth aims to achieve this 267 

goal. 268 

4.3.2.1 Rocking spectra revisited 269 

To arrive at a more generalized and efficient format for rocking spectra for a simple cycloidal pulse with amplitude 270 

𝑎𝑝 and period 𝑇𝑝 =
2𝜋

𝜔𝑝
  that characterize the spatial and temporal scales of the pulse, respectively, the maximum 271 

rotation 𝜃max. (taking absolute value only) of a free-standing rigid block with in-plane eccentricity can be 272 

mathematically expressed as follows. 273 

𝜃𝑚𝑎𝑥. = 𝑓(𝑡𝑎𝑛𝛼, 𝑝, 𝑎𝑝, 2𝜋 𝑇𝑝⁄ , 𝑔, 𝑒)  …(5a) 274 



 

According to Buckingham’s Π-theorem, ‘if an equation involving um variables is dimensionally 275 

homogeneous, it can be reduced to a relationship among (um − un) independent dimensionless Π products where 276 

un is the minimum number of reference dimensions required to describe the physical variables’ (Barenblatt, 1996). 277 

In the present context, taking g and 𝑇𝑝 as repeating variables (the product of these variables is not dimensionless), 278 

equation (5a) may be recast in the dimensionless format as below. 279 

Π𝜃
′ = 𝜙( Π𝛼

′ , Π𝑝, Π𝑒
′ , Π𝑔

′ )    …(5b) 280 

in which Π𝜃
′ = 𝜃𝑚𝑎𝑥.; Π𝛼

′ = 𝑡𝑎𝑛𝛼; Π𝑝 =
2𝜋

𝑝𝑇𝑝
=

𝜔𝑝

𝑝
; Π𝑒

′ =
𝑒

𝑔𝑇𝑝
2; Π𝑔

′ =
𝑎𝑝

𝑔
. For a more appropriate set of variables, 281 

the principles of orientational analysis (Siano, 1985; Araneda, 1996; Dimitrakopoulos and DeJong, 2012a, Roy 282 

and Santra, 2024) is further adopted. It may be noted that the orientational analysis cannot, in principle, result in 283 

a definite combination; however, can lead to the possible forms conforming to the natural physics of orientational 284 

homogeneity. Accordingly, we choose to reorganize equation (5b) as follows. 285 

Π𝜃 = 𝜑(Π𝑝, Π𝑒 , Π𝑔)     …(5c) 286 

where Π𝜃 =
𝜃𝑚𝑎𝑥.

𝑡𝑎𝑛𝛼
; Π𝑝 =

𝜔𝑝

𝑝
; Π𝑒 =

𝑒

𝑔𝑡𝑎𝑛𝛼𝑇𝑝
2; Π𝑔 =

𝑎𝑝

𝑔𝑡𝑎𝑛𝛼
. Taking 𝑙𝑥, 𝑙𝑦, 𝑙𝑧 as the unit orientations along the  𝑥, 𝑦, 287 

𝑧 and 𝑙0 orinetationless quantity, the orientational homogeneity for (5c) can easily be verified. In fact, for the 288 

chosen combination, each group in itself is orientationless as shown below. 289 

Π𝜃 =
𝜃𝑚𝑎𝑥.

𝑡𝑎𝑛𝛼
≗

𝑙𝑦

𝑙𝑦
=  𝑙0; Π𝑝 = 

𝜔𝑝

𝑝
≗

𝑙0

𝑙0
≗ 𝑙0; Π𝑒 =

𝑒

𝑔𝑡𝑎𝑛𝛼𝑇𝑝
2 ≗

𝑙𝑥

𝑙𝑧𝑙𝑦
≗ 𝑙0, Π𝑔 =

𝑎𝑝

𝑔𝑡𝑎𝑛𝛼
≗

𝑙𝑥

𝑙𝑧𝑙𝑦
≗ 𝑙0 290 

This follows that the rocking spectrum established in terms of the variables in (5c) (i) is independent of 291 

the absolute magnitude of each characteristics variable but in groups, (ii) reduces the number of influential factors, 292 

and (iii) inherently satisfies natural and fundamental physics. Similar development for symmetric systems is 293 

available elsewhere (Dimitrakopoulos and Paraskeva, 2015). Using these combinations of dimensionless and 294 

orientationless group of variables, rocking spectra are constructed in Figure 9 which display, for constant values 295 

of Π𝑒 and Π𝑔, the variation of Π𝜃 as a function of Π𝑝. Π𝑒 = 0 represents the symmetric system, whereas the values 296 

of the nondimensional eccentricities are taken as Π𝑒 =  0.034 in positive and negative sense, respectively in the 297 

sample form. The dispersion among the curves (plotted on the left) appears noticeable even for constant values of 298 

Π𝑒 and Π𝑔. To gain insight, a companion plot, obtained by setting η to a constant (= 0.94), is shown to the right 299 

of each curve. These reveal appreciable reduction in dispersion among the variation curves and suggest that the 300 

curves approximately collapse to two bands respectively for tanα ≤ 0.26 (representing many historical 301 



 

monuments as reported in Makris and Kampas, 2016) and above, each for symmetry, positive and negative 302 

eccentricities (shown in Figure 9b). Hence, the rocking surfaces as a function of the variables in (5c) should be 303 

constructed, in principle, for specific values of tanα.   304 

Hence, rocking surfaces in Figure 10a (tanα = 0.172) and Figure 10b (tanα = 0.234) may be attractive 305 

for practical assessment as these apply to a broad set of structures subjected to a number of characteristic groups 306 

rather than each variable separately. Hence, for a constant Π𝑒  (= 0.034), we construct rocking spectra in the 307 

form of surfaces which present the variation of Π𝜃 as a function of Π𝑝 and Π𝑔 for two different values of tanα. 308 

Given that the direction of excitation is unknown in advance, maximum values of Π𝜃, out of positive and negative 309 

Π𝑒, are plotted. The cross-section of the surfaces for Π𝑔 = 2.000 are also shown in two-dimensional format for 310 

convenience (in Figure 10c). These surfaces, corresponding to appropriate Π𝑒 and tanα may be utilized to estimate 311 

the value of 𝜃𝑚𝑎𝑥., regardless of the values of other governing parameters. The applicability of these spectra for a 312 

real-life problem has been illustrated subsequently. 313 

5.0  Stability Coefficient Spectra: Assessing Margin between Overturning and Uplift 314 

The overturning and rocking spectra reveal that, at least for pulse-like record, the response of the block depend 315 

on both ap and ωp (or Tp = 2π/ωp). It is important to note that ap,OT (acceleration amplitude for overturning) for an 316 

eccentric block when subjected to a pulse with a given period Tp may be mathematically expressed as follows. 317 

𝑎𝑝𝑂𝑇
= 𝑓(𝑡𝑎𝑛𝛼, 𝑏, 𝑔, 𝜔𝑝, 𝑒)      ……(6a) 318 

In the form of dimensionless groups, this may be expressed as follows. 319 

Π′
𝑎𝑝𝑂𝑇

= 𝜙( Π𝛼
′ , Π𝑏

′ ,  Π𝑒
′ )  ……(6b) 320 

where Π′
𝑎𝑝𝑂𝑇

=
𝑎𝑝𝑂𝑇

𝑔
, Π𝛼

′ = 𝑡𝑎𝑛𝛼, Π𝑏
′ =

𝑏𝜔𝑝
2

𝑔
, Π𝑒

′ =
𝑒𝜔𝑝

2

𝑔
 . Further, equation (6b) can be organized in 321 

dimensionless-orientationless form as 322 

Π𝑎𝑝𝑂𝑇
= 𝐹′(Π′′

𝑏 , Π′′
𝑒)      ……(6c) 323 

in which Π𝑎𝑝𝑂𝑇
=

𝑎𝑝𝑂𝑇

𝑔𝑡𝑎𝑛𝛼
, Π′′

𝑏 =
𝑏𝜔𝑝

2

𝑔𝑡𝑎𝑛𝛼
, Π′′

𝑒 =
𝑒𝜔𝑝

2

𝑔𝑡𝑎𝑛𝛼
. Substituting 𝑏 = 𝑅𝑠𝑖𝑛𝛼 for a symmetric reference block 324 

and 𝜔𝑝 = 2𝜋/𝑇𝑝, after algebraic manipulation, equation (6c) may be expressed as follows. 325 

Π𝑎𝑝𝑂𝑇
= 𝐹(Π𝑟𝑒𝑙., Π𝑒)         ……(6d) 326 



 

where Π𝑟𝑒𝑙. =
𝑔𝑡𝑎𝑛𝛼𝑇𝑝

2

𝑅𝑠𝑖𝑛𝛼
 and Π𝑒 =

𝑒

𝑔𝑡𝑎𝑛𝛼𝑇𝑝
2 . Notably, b = Rsinα may be viewed, in the simplest form, as the 327 

capacity of a symmetric block (as in equation (4)), whereas gtanα𝑇𝑝
2 is the minimum characteristics scale of 328 

excitation necessary for uplift of the reference symmetric block. Hence, the eccentric block must uplift for this 329 

characteristic scale at least for any one direction of shaking. The intensity of the pulse that the block can sustain 330 

post-uplift, i.e., Π𝑎𝑝𝑂𝑇
=  

𝑎𝑝𝑂𝑇

𝑔𝑡𝑎𝑛𝛼
 is expressed, for a specified value of Π𝑒, as a function of Π𝑟𝑒𝑙. – a relative measure 331 

of characteristics scale at uplift with respect to the block capacity. This spectrum expressing the amplitude 332 

coefficient of an excitation for safe rocking is named herein as is the stability coefficient spectrum. 333 

Overturning spectrum reveals that the block may remain stable at higher amplitudes owing to the shift 334 

of the overturning modes; however, such possibilities are less likely for earthquake excitations that contain several 335 

frequencies, and hence the minimum amplitude out of all probable modes of overturning is taken to establish this 336 

stability coefficient spectrum. Further, it has already been observed that the values of Π𝑎𝑝𝑂𝑇
depend on the sense 337 

of eccentricities. Since the direction of excitation is generally unknown in advance, the lower value of Π𝑎𝑝𝑂𝑇
, 338 

between those for the positive and negative eccentricities, is considered. It is exciting that the stability coefficient 339 

spectrum plotted in Figure 11 are found to be reasonably crowded for tanα ≤ 0.26. 340 

Figure 11 shows that Π𝑎𝑝𝑂𝑇
 sharply reduces with increase of Π𝑟𝑒𝑙.. The observed trend with Π𝑟𝑒𝑙. implies 341 

that a pulse capable of initiating rocking may induce overturning, depending on the duration of the pulse. For a 342 

column subjected to static axial compression, the load required for the loss of stability decreases as slenderness 343 

increases, whereas the system becomes very stable as slenderness decreases. For a free-standing slender block, 344 

Π𝑟𝑒𝑙. may be viewed as analogous to the slenderness of the block relative to excitation. Since a long-duration pulse 345 

corresponding to a larger Π𝑟𝑒𝑙.  induces a weak angular acceleration, the rotational inertia is weakly engaged, and 346 

as a result, the block is more prone to overturning upon uplift with little margin for stability. On the other hand, 347 

the block is likely to remain stable when Π𝑟𝑒𝑙. is relatively small as the rotational inertia strongly contributes.  348 

The stability coefficient spectrum may provide reasonable estimate of the safety margin that a block 349 

enjoys between uplifting and overturning. For a given excitation (strong enough to uplift) with duration Tp, the 350 

intensity of excitation ap,OT for overturning a block may be estimated for known values of eccentricity. In the 351 

context of design, the maximum permissible amplitude (ap,allow.) may be obtained for a chosen factor of safety (β) 352 

as ap,allow. = ap,OT/β. It may be noted that, for a pulse with intensity less than ap,OT, even though the block will not 353 

overturn, may experience objectionable rotation. Thus, to ensure acceptable performance, the corresponding 354 



 

rotation demand may be read from the rocking spectrum and β may accordingly be adjusted. This is illustrated in 355 

the next section.  356 

6.0  Design for Free-standing Rocking Blocks: Illustration 357 

The stability coefficient spectra proposed in Figure 11 together with the rocking spectra in the dimensionless and 358 

orientationless form may be useful for design of slender blocks. This has been illustrated through a simple example 359 

in Appendix I. For a given block and excitation (strong enough for uplift) having duration Tp, Π𝑟𝑒𝑙. may be easily 360 

calculated and Π𝑎𝑝𝑂𝑇
can then be readily obtained from the stability coefficient spectrum of relevant Π𝑒. The 361 

intensity of excitation ap,OT for overturning may, hence, be directly read from the stability coefficient spectra. In 362 

the context of design, the maximum permissible amplitude (ap,allow.) may be obtained for a chosen factor of safety 363 

(β) as ap,allow. = ap,OT/β. Clearly, β = 1 represents the curve corresponding to just overturn. It may be noted that, for 364 

the pulse with ap,allow. so estimated, even though the block will not overturn, may experience substantial rotation. 365 

Thus, to limit maximum rotation to a selected performance level, the corresponding rotation be checked from the 366 

associated rocking spectrum. Appendix I summarises the procedures for design and performance assessment 367 

using the stability coefficient spectra in conjunction with the rocking spectrum in details.  368 

It is apparent that the proposed method can be applied with confidence, especially when the base 369 

excitation is harmonic as may often occur in mechanical systems. In reality, a seismic excitation may be more 370 

involved; however, kinematic characteristics of ground motions in the near-field often reveal distinguishable 371 

acceleration pulse, which may be characterized by ap and ωp, respectively representing the pulse acceleration 372 

amplitude and its frequency. These parameters, for a given seismic excitation, may be formally extracted using 373 

the established mathematical technique that engages wavelet transforms (Vassiliou and Makris, 2011). For a given 374 

block and a selected excitation strong enough for uplift, the intrinsic value of Π𝑟𝑒𝑙. may be suitably calculated and 375 

ap,allow. and 𝜃𝑚𝑎𝑥. may be similarly estimated. Thus, the proposed design procedure may be useful for seismic 376 

design, especially in the near-field for records with coherent pulse. This, however, warrants further scrutiny and 377 

is made in the following section. 378 

7.0  Application to Seismic Shaking 379 

The overturning spectra for a one-sine pulse explicitly recognize the existence of different modes of overturning, 380 

each associated with distinct behaviour characterized by no impact, one impact, or two impacts. In the context of 381 

seismic shaking, the response histories of a block covering both positive and negative eccentricities (e = ± 0.025m) 382 



 

are computed. The values of α = 0.1857 rad, p = 1.6566 rad/s are taken with reference to the historical column in 383 

Temple of Aphaia, Aegina (Makris and Kampas, 2016). The response histories are plotted in Figure 12 for an 384 

arbitrarily selected real motion scaled to different values — corresponding to rocking and overturning. A look at 385 

the histories indicates that the overturning in a seismic event may occur following a few impacts. 386 

To gain insight into the behaviour associated with multiple impacts, the response of a block is studied 387 

for successive harmonic excitations continued over a long duration of 150s, taking increments of ap and ωp as 388 

0.0186 m/s2 and 0.0053 rad/s, respectively, as shown in Figure 13. The regions of overturning are segregated by 389 

different colours according to the number of impacts before overturning, while the regions for rocking are left 390 

white. It is evident that 391 

• the block may overturn in multiple modes (classified herein as M(0), M(1), M(2), M(3-7), M(8-14), M(15-35), and 392 

M(>35), in which numbers in the bracket represent numbers of impact), in contrast to the characteristics 393 

for a one-sine pulse. Accordingly, several modes of overturning are classified and designated as M(0), 394 

M(1), M(2), M(3-7), M(8-14), M(15-35), and M(>35).  395 

• the domain of overturning is sensitive to the direction of eccentricity, and  396 

• the boundaries delineating the overturning zones with different number of impacts are fractal and are 397 

extremely sensitive as such.  398 

Furthermore, a careful examination of the bifurcation diagram (Figure 14 and Figure 15) for symmetric 399 

and eccentric blocks reveals that multiple solutions are possible with changes in the amplitude parameter of 400 

excitation. This, combined with the irregular basin of attraction and the emergence of even and odd subharmonics, 401 

underscore the sensitivity to initial conditions (Figure 16 and Figure 17). These findings highlight the need to re-402 

evaluate the performance of the proposed design approach exclusively for seismic shaking; even though the 403 

earthquake records typically contain a wide variety of frequencies, last over short duration resulting in a few 404 

impacts prior to overturning. Therefore, the proposed design guidelines engaging the minimum overturning 405 

acceleration, suitable safety factors, and maximum rotation demands are briefly revisited for real records. For this 406 

purpose, fifteen near-fault motions with forward-directivity signature are selected from the NGA-WEST2 407 

database of the Pacific Earthquake Engineering Research (PEER) Centre. The details of these records, as available 408 

elsewhere (Roy et al., 2018; Roy et al., 2020), are summarized in Table 1.  409 

Based on earlier literature (e.g., Dimitrakopoulos et al., 2009; Efthymiou and Makris, 2022; Roy et al., 410 

2018; Roy et al., 2020; Acharjya and Roy, 2023), taking the mean period of ground motion (Tm as defined in 411 



 

Rathje et al., 2004) as substitute for Tp, values of ap,OT are computed by nonlinear dynamic analyses and are marked 412 

in the proposed stability coefficient spectra for a block with tanα = 0.172. (Figure 18a). Assuming a factor of 413 

safety β = 1.8 by inspection, the variation curve for ap,allow is constructed and overlain therein. This shows that β 414 

= 1.8 may be reasonable to estimate ap,allow at least for the selected motions. Further, corresponding to ap,allow, 415 

values of 𝜃max.,, covering both positive and negative values of eccentricities, as obtained from nonlinear dynamic 416 

analysis (𝜃max.,NDA) and the proposed rocking surfaces (𝜃max.,RS), are computed and presented in Figure 18b. It 417 

appears that the rocking surfaces can estimate the maximum rotation generally on the conservative side (excepting 418 

three cases only). A close look to Figure 18a and Figure 18b suggests that considering β = 1.8 may appreciably 419 

reduce ap,allow, preventing uplift, especially for larger Π𝑟𝑒𝑙. The corresponding cases estimating 𝜃max.,RS ≤ 0.1 are 420 

marked by green diamonds; representing negligible 𝜃max.,NDA. It is already explained that, in this region, safety 421 

margin between uplift and overturning is insignificant and hence, ap,allow is restricted close to just uplift state 422 

resulting in small 𝜃max. For the same set of records, a similar set of results is presented in Figure 19a for tanα = 423 

0.234 which, for β = 1.8 ensures safety for  75%. ( 2.5 may be adequate to be safe in each case). The values of 424 

𝜃max.RS also appear reliable for most of these cases (Figure 19b). 425 

Considering the nonlinear nature of the problem and the complex characteristics of an earthquake record, 426 

the performance of the simplified spectra corresponding to the harmonic base excitations appears remarkable. It 427 

should also be noted that the current methodology only involves Tm of an earthquake, which can be reasonably 428 

estimated using established ground motion models (NIST GCR 11-917-15, 2011; Du, 2017). Therefore, the 429 

proposed guidelines, founded on a rational understanding of dynamics and fundamental principles of mechanics, 430 

are useful for routine design of free-standing and rocking-isolated slender systems, especially in view of the 431 

‘flawed’ methodology currently in use. However, it may essential to explore suitable β, may be in terms of Π𝑟𝑒𝑙. 432 

and α, using a larger number of systems and real records. 433 

8.0  Summary and Conclusions 434 

This paper makes a comprehensive investigation into the behaviour of free-standing slender structures with 435 

eccentricities. After a scrutiny to free-vibration characteristics, the response to harmonic base excitations is studied 436 

through overturning and rocking spectra for both positive and negative eccentricities. The comprehensive case 437 

studies provide critical insights into key dynamic phenomena, such as overturning modes, sensitivity to the 438 

direction of shaking, and the interplay between the size and slenderness of the blocks. A novel stability coefficient 439 

spectrum and a rocking spectrum in the dimensionless and orientationless format are proposed and these have 440 



 

been shown useful for the design of slender free-standing systems to harmonic pulses and seismic base excitation. 441 

The investigation leads to the following broad conclusions. 442 

1. A comprehensive analysis of the response of slender blocks with eccentricity to one-sine pulse, 443 

corresponding overturning spectra as well as the free-vibration properties reveals the following. 444 

• The systems with large negative eccentricity may overturn in the M0 and M2 modes. However, M1 445 

appears to regulate partly within the M2 region for systems with moderate negative eccentricity. As 446 

the eccentricity continues to decrease, the area covered by M1 gradually expands, virtually crushing 447 

M2 region and assumes the characteristics of symmetric systems.  448 

• The response of systems with positive eccentricity is similar to those of symmetric ones, i.e., 449 

overturning might occur either in M0 or M1 mode, but expectedly at a lower amplitude.  450 

• The observed jump to a higher acceleration for overturning suggests a transition to a different 451 

overturning mode, and may be attributed to the bifurcation phenomenon of the nonlinear system. In 452 

case of the base excitation in the form of a one-sine pulse, the mode M2 appears only in the systems 453 

with negative eccentricity. 454 

• For one-sine pulse, overturning (if any) occurs in the free-vibration regime and a look at the free-455 

vibrational characteristics for varying state-variables corroborate the same.  456 

2. The dynamics of the eccentric systems is further examined through rocking spectrum in its standard form, 457 

which reveals the sensitivity of response to magnitude and direction of eccentricity. For a specified 458 

excitation, rocking spectra are reconstructed for blocks with varying slenderness and size, overlain 459 

therein the zones of overturning in the compact form. These together elucidate that the ‘competition’ 460 

between size and slenderness to regulate overturning is predominant for blocks with relatively small size. 461 

However, as block size increases, rocking overrides overturning, yet both factors continue to influence 462 

the maximum rotation. 463 

3. The novel contribution of this paper lies in the development of the stability coefficient spectra, which, 464 

for any given block, can be readily employed to estimate the overturning acceleration for a pulse of 465 

known duration. These values of overturning acceleration can then be appropriately scaled to determine 466 

the allowable intensity. Next, the corresponding maximum rotation of the block can be calculated using 467 

the innovative rocking spectra introduced in this work. Both the stability coefficient spectra and the 468 

rocking spectra are dimensionless and orientationless, ensuring that they conform to the fundamental 469 

principles of physics. 470 



 

4. The inherent nonlinearity of free-standing systems leads to complex behaviour in their long-term 471 

response, resulting in bifurcations and the emergence of fractal boundaries of overturning after varying 472 

numbers of impacts. Notably, the proposed strategy, based on simple harmonic base excitation, 473 

demonstrates remarkable performance when applied to real seismic excitations, at least in the near field. 474 

This approach is found effective to estimate both the allowable intensity of shaking and the corresponding 475 

rotation, considering the mean period (Tm) as the appropriate time scale. However, the choice of 476 

appropriate factor of safety deserves further investigation. 477 

Given that the vertical component is significantly downscaled while influencing rocking systems, the observations 478 

and methodology may still be applicable even when the vertical component is strong (Shi et al., 1996; Makris and 479 

Zhang, 1999; Makris and Kampas, 2016). 480 

In summary, this paper makes a comprehensive investigation into the response of free-standing slender 481 

structures to base excitation per overturning and rocking spectra for both positive and negative eccentricities. The 482 

novel stability coefficient spectra and rocking spectra for harmonic base excitation have been shown invaluable 483 

for seismic design of free-standing systems. The illustration shown can be taken forward as convenient design 484 

approach. Future work should refine the proposed approach, particularly by developing more accurate guidelines 485 

for β. This β might be somewhat greater as the basic spectra hinge on simplified harmonic pulse. Additionally, 486 

the methodology warrants further examination in the context of three-dimensional bodies subjected to orthogonal 487 

components of shaking - a challenge that may be addressed by drawing upon recent studies in three-dimensional 488 

framework (Pradhan et al. 2022; Pradhan and Roy, 2023; 2024). Such studies should also investigate the effects 489 

of variation of restitution parameter and eccentricities in view of the inherent uncertainties in their estimation 490 

process.  491 
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 499 

Appendix I: Design of Free-standing Structures 500 

Objectives: The following example illustrates the strategies for design and performance assessment of a free-501 

standing structure using the stability coefficient spectra and rocking spectra derived herein in dimensionless and 502 

orientationless format. 503 

Illustration: A free-standing rigid block (dimension: 2𝑏 = 0.813𝑚; 2ℎ = 4.736𝑚;  𝑒  =  0.017𝑚) is subjected 504 

to a base excitation with pulse period 𝑇𝑝 = 0.550s (anticipated). Determine 505 

(a) 𝑎𝑝,𝑂𝑇 , 𝑖. 𝑒., the maximum amplitude of excitation corresponding to overturning, and  506 

(b) the allowable value of amplitude 𝑎𝑝,𝑎𝑙𝑙𝑜𝑤 for which the system will rock with at least a factor of safety, β = 507 

1.1 against overturning and maximum permissible rotation 
𝜃𝑎𝑙𝑙𝑜𝑤

𝑡𝑎𝑛𝛼
 ≤ 0.330. 508 

Also evaluate (c) the response of another block (dimension: 2𝑏 = 0.491𝑚, 2ℎ = 2.097𝑚;  𝑒 =  0.015𝑚) when 509 

subjected to a base excitation with 𝑎𝑝 = 4.594 𝑚/𝑠2 and 𝑇𝑝 = 0.442s. 510 

Solution: 511 

Reference symmetric system 512 

Characteristics of Block:  513 

Dimension of block: 2𝑏 = 0.813𝑚; 2ℎ = 4.736𝑚  514 

 The semi-diagonal length 𝑅 = √𝑏2 + ℎ2 = √0.4062 + 2.3682 = 2.403𝑚 515 

and the slenderness 𝛼 = tan−1 𝑏/ℎ = 0.170 𝑟𝑎𝑑 516 

Characteristics of Block relative to Excitation: 517 

Minimum acceleration amplitude for uplift, 𝑎𝑝,𝑢𝑝 = 𝑔𝑡𝑎𝑛𝛼 = 9.81 × 𝑡𝑎𝑛(0.17)  = 1.684 𝑚/𝑠2 518 

 Taking 𝑇𝑝 = 0.550s, the parameter Π𝑟𝑒𝑙. =
𝑔𝑡𝑎𝑛𝛼𝑇𝑝

2

𝑅𝑠𝑖𝑛𝛼
 = 

1.684×0.5502

2.403×𝑠𝑖𝑛(0.17)
= 1.253           519 

(a) For e = 0.017m, Π𝑒 =
𝑒

𝑔𝑡𝑎𝑛𝛼𝑇𝑝
2 = =

0.017

1.684×0.552 = 0.034 520 

             So, for Π𝑟𝑒𝑙. = 1.253, Π𝑒 = 0.034; Π𝑎𝑝𝑂𝑇
=

𝑎𝑝,𝑂𝑇

𝑔𝑡𝑎𝑛𝛼
 = 3.918 (refer to Figure 11) 521 

Hence, the block (𝟐𝒃 = 𝟎. 𝟖𝟏𝟑𝒎; 𝟐𝒉 = 𝟒. 𝟕𝟑𝟔𝒎 , 𝒆𝒙  =  𝟎. 𝟎𝟏𝟕𝐦), will overturn at 𝒂𝒑,𝑶𝑻 = 𝟑. 𝟗𝟏𝟖 × 9.81× 522 

𝒕𝒂𝒏(𝟎. 𝟏𝟕)  = 6.598 𝒎/𝒔𝟐  for the excitation 𝑻𝒑 = 0.550s 523 



 

(b) Considering β = 1.100, 𝑎𝑝,𝑎𝑙𝑙𝑜𝑤= 
𝑎𝑝,𝑂𝑇

β
 = 5.998 𝑚/𝑠2 524 

Now for the base excitation with 𝑎𝑝 =  𝑎𝑝,𝑎𝑙𝑙𝑜𝑤= 5.998 𝑚/𝑠2and  𝑇𝑝 = 0.550s,  525 

                                            
𝜃𝑚𝑎𝑥.

𝑡𝑎𝑛𝛼
= 0.733 (refer to Figure 10a) > 

𝜃𝑎𝑙𝑙𝑜𝑤.

𝑡𝑎𝑛𝛼
= 0.330 526 

(derived from the nonlinear response history analysis of the actual asymmetric block or may be obtained 527 

from the corresponding rocking spectrum). 528 

Iterations 529 

Iteration No. 1:  530 

To reduce maximum rotation, assume β = 1.200, 𝑎𝑝,𝑎𝑙𝑙𝑜𝑤= 
𝑎𝑝,𝑂𝑇

β
 = 5.498 𝑚/𝑠2 531 

Now for the base excitation with 𝑎𝑝 =  𝑎𝑝,𝑎𝑙𝑙𝑜𝑤= 5.498 𝑚/𝑠2 and  𝑇𝑝 = 0.550s,  532 

                                            
𝜃𝑚𝑎𝑥.

𝑡𝑎𝑛𝛼
= 0.633 (refer to Figure 10a) > 

𝜃𝑎𝑙𝑙𝑜𝑤.

𝑡𝑎𝑛𝛼
= 0.330 533 

Iteration No. 2:  534 

To reduce maximum rotation, assume β = 1.960, 𝑎𝑝,𝑎𝑙𝑙𝑜𝑤= 
𝑎𝑝,𝑂𝑇

β
 = 3.366 𝑚/𝑠2 535 

Now for the base excitation with 𝑎𝑝 =  𝑎𝑝,𝑎𝑙𝑙𝑜𝑤= 3.366 𝑚/𝑠2 and  𝑇𝑝 = 0.550s,  536 

                                            
𝜃𝑚𝑎𝑥.

𝑡𝑎𝑛𝛼
= 0.319 (refer to Figure 10a or Figure 10c) < 

𝜃𝑎𝑙𝑙𝑜𝑤.

𝑡𝑎𝑛𝛼
= 0.330 537 

Therefore, the characteristics of the design acceleration are 𝒂𝒑 = 𝟑. 𝟑𝟔𝟔 𝒎/𝒔𝟐,  𝑻𝒑 = 0.550 s for a factor of 538 

safety of 1.960 ( > 1.100) against overturning as well as for a maximum rotation to   0.319 tanα. 539 

(c) For the excitation with 𝑇𝑝 = 0.442,  540 

Π𝑟𝑒𝑙. =
𝑔𝑡𝑎𝑛𝛼𝑇𝑝

2

𝑅𝑠𝑖𝑛𝛼
 = 

9.81×𝑡𝑎𝑛 (0.23)×0.4422

1.077×𝑠𝑖𝑛(0.23)
= 1.828 541 

For Π𝑟𝑒𝑙.  = 1.827, Π𝑒 = 0.034; Π𝑎𝑝𝑂𝑇
=

𝑎𝑝,𝑂𝑇

𝑔𝑡𝑎𝑛𝛼
 = 2.655 corresponding to block 2𝑏 = 0.491𝑚, 2ℎ =542 

2.097𝑚; e = 0.015 m (refer to Figure 11). 543 

 544 

Hence, 𝑎𝑝,𝑂𝑇 = Π𝑎𝑝𝑂𝑇
× 𝑔𝑡𝑎𝑛𝛼 = 2.655 × 9.81 × 𝑡𝑎𝑛(0.23) = 6.098 m/s2 545 

Hence, the block shall uplift and rock with β = 
𝒂𝒑,𝑶𝑻

𝒂𝒑
 =1.327 against overturning for excitation with 𝒂𝒑 =546 

𝟒. 𝟓𝟗𝟓 𝒎/𝒔𝟐,  𝑻𝒑 = 0.442 s. 547 

Also, for 𝑎𝑝 = 4.595  𝑚/𝑠2 and 𝑇𝑝 = 0.442 s,  
𝜃𝑚𝑎𝑥.

𝑡𝑎𝑛𝛼
= 0.501 (refer to Figure 10b or Figure 10c) 548 

(derived from the nonlinear response history analysis of the actual asymmetric block). 549 

 550 
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