M. Tech. (Two Years)

Course Curriculum and Syllabi

Specialization:

1. Materials Engineering

Manufacturing Technology

Department of Metallurgy and Materials Engineering

Indian Institute of Engineering Science and Technology Shibpur भारतीय अभियांत्रिकी विज्ञान एवं प्रौद्योगिकी संस्थान, शिबपुर ভाরতীয় প্রকৌশল বিজ্ঞান এবং প্রযুক্তিবিদ্যা প্রতিষ্ঠান, শিবপুর Howrah 711103, West Bengal, India

https://www.iiests.ac.in/IIEST/AcaUnitDetails/MME

Effective from July, 2021

FIRST SEMESTER

Table - 1

Specialization: 1. Materials Engineering, and 2. Manufacturing Technology

Sl. No	Paper	Credit
1	Paper-I (Dep. Core)	3
2	Paper-II (Dep. Core)	3
3	Paper-III (Dep. Core)	3
4	Paper-IV (Dep. Elec.)	3
5	Paper-V (Open Elec.)	3
	Theory Subtotal	15
6	Lab - I/ Mini Project - I	2
7	Lab - II/Mini Project - II	2
8	Lab - III/Mini Project - III	2
	Practical Subtotal	6
	Total Credit	21

Note:

- 1. Paper I, II and III are compulsory subjects for the particular specialization.
- 2. Paper IV, V are elective subjects, which are to be selected from the table below. A student may also opt for open electives offered by other departments for first semester M. Tech Students (subject to availability).
- 3. Lab I, II, III are typically related to Paper I, II and III. However, in some cases, if the Department feels, these may be related to Paper IV and V also (for departmental electives only). In cases, where lab facility is not available, mini projects related to Paper I/II/III may be offered.
- 4. The credits mentioned above are indicative and are as such to be followed. However, in cases, where it is essential to include a Tutorial or to increase the lab hours, credits may be increased to 4 (Theory)/3(Practical). In such cases, the total credit should not exceed 24.

a) Departmental Core Papers for the specialization (Paper – I, II, III)

Specialization: 1. Materials Engineering, and 2. Manufacturing Technology

SI. No	Subject	Subject Name	Class Load/Week			Total	Cradit	Morko
	code		L	Т	Р	load (h)	creuit	Maiks
1	MM5101	Fundamentals of Materials	3	0	0	40	3	100
2	MM5102	Characterization of Materials	3	0	0	40	3	100
3	MM5103	<u>Thermodynamics and Kinetics of</u> <u>Materials</u>	3	0	0	40	3	100

b) Departmental Elective Papers for the specialization (Paper - IV)

Specialization: 1. Materials Engineering

Sl. Subject No code	Subject	ubject Subject Name	Class I	Load/V	Veek	Total	Cradit	Morke
	Subject Name	L	Т	Р	load (h)	creuit	Marks	
1	MM5121	Functional Materials	3	0	0	30	3	100
2	MM5122	<u>Composite Materials</u>	3	0	0	40	3	100
3	MM5123	Surface Degradation and Protection	3	0	0	40	3	100

Sl. Subject No code	Subject	Crubic et Norre	Class Load/Week			Total	Credit	Monko
	Subject Name	L	Т	Р	load (h)	creuit	Marks	
1	MM5124	Iron and Steel Making	3	0	0	40	3	100
2	MM5125	<u>Sustainable Materials</u> <u>Manufacturing</u>	3	0	0	36	3	100
3	MM5126	Additive Manufacturing	3	0	0	40	3	100

Specialization: 2. Manufacturing Technology

b) *Open (non-departmental) Elective* Papers (Paper – V) offered by the Department of Metallurgy and Materials Engineering

Sl. Subject No code	Subject	Subject Name	Class Load/Week			Total	Credit	Marke	
	Subject Name	L	Т	Р	load (h)	creat			
1	MM5161	<u>Mechanical Behaviour of</u> <u>Engineering Materials</u>	3	0	0	40	3	100	
2	MM5162	Selection of Engineering Materials	3	0	0	40	3	100	
3	MM5163	Joining of Materials	3	0	0	40	3	100	

c) Departmental Labs for the specialization (Lab – I, II, III)

Specialization: 1. Materials Engineering, and 2. Manufacturing Technology

Sl. Subject No code	Subject	Subject Name	Class I	.oad/V	Veek	Total	Cradit	Marke
	Subject Name	L	Т	Р	load (h)	creat	Marks	
1	MM5171	Fundamentals of Materials Lab.	0	0	3	33	2	100
2	MM5172	Characterization of Materials Lab.	0	0	3	30	2	100

d) Departmental Mini Projects for the specialization

Specialization: 1. Materials Engineering, and 2. Manufacturing Technology

SI. No	Subject code	Subject Subject Name	Class Load/Week			Total	Credit	Marks
			L	Т	Р	Ioau (II)		
1	MM5173	Mini Project	0	0	3	30	2	100

Note: In cases, where Mini Project if offered, the related Paper (Paper – I, II or III) should be mentioned.

SECOND SEMESTER

Table - 2

Specialization: 1. Materials Engineering, and 2. Manufacturing Technology

Sl. No	Paper	Credit
1	Paper – VI (Dep. Core)	3
2	Paper – VII (Dep. Core)	3
3	Paper – VIII (Dep. Core)	3
4	Paper-IX (Dep. Elec)	3
5	Paper-X (Open Elec.)	3
	Theory Subtotal	15
6	M. Tech Project Part – I (Term Paper)	4
7	Term Paper Seminar & Viva-voce	2
8	Practical Subtotal	6
	Total Credit	21

Note:

- 1. Paper VI, VII and VIII are compulsory subjects for the particular specialization.
- 2. Paper IX, X are elective subjects, which are to be selected from the table below. A student may also opt for open electives offered by other departments for second semester M. Tech Students (subject to availability).
- 3. For M. Tech Thesis Part I (Term Paper), the student will work under the guidance of the Supervisor(s) from the beginning of the second semester, and submit the Term Paper (literature review and objective and scope of the broad area of M. Tech thesis work). Submission will be followed by a seminar and viva-voce.
- 4. The credits mentioned above are indicative and are as such to be followed. However, in cases, where it is essential to include a Tutorial credits may be increased to 4 (Theory). In such cases, the total credit should not exceed 23.

a) Departmental Core Papers for the specialization (Paper – VI, VII, VIII)

Specialization: 1. Materials Engineering, and 2. Manufacturing Technology

Sl. Subject No code	Subject	Subject Name	Class Load/Week			Total	Cradit	Morke
	Subject Name	L	Т	Р	load (h)	creuit	Marks	
1	MM5201	Manufacturing Processes	3	0	0	40	3	100
2	MM5202	Mechanical Behaviour of Materials	3	0	0	40	3	100
3	MM5203	Multiscale Materials Modelling	3	0	0	40	3	100

b) Departmental Elective Papers for the specialization (Paper - IX)

Specialization: 1. Materials Engineering

Sl. Subject No code	Subject	Subject Subject Name	Class Load/Week			Total	Cradit	Morke
	Subject Name	L	Т	Р	load (h)	creuit	Marks	
1	MM5221	Design and selection of Materials	3	0	0	40	3	100
2	MM5222	Energy Materials	3	0	0	40	3	100
3	MM5223	Surface Treatment and Modification	3	0	0	38	3	100

Sl. Subject No code	Subject	Subject Nome	Class Load/Week			Total	Cradit	Marks
	Subject Name	L	Т	Р	load (h)	creuit	Marks	
1	MM5224	Joining Technology	3	0	0	40	3	100
2	MM5225	Engineering Tribology	3	0	0	40	3	100
3	MM5226	Microsystem Technology	3	0	0	40	3	100

Specialization: 2. Manufacturing Technology

b) *Open (non-departmental) Elective* Papers (Paper – X) offered by the Department of Metallurgy and Materials Engineering

Sl. Subject No code	Subject	Cubie at Norme	Class Load/Week			Total	Cradit	Marke
	Subject Name	L	Т	Р	load (h)	creuit	Marks	
1	MM5261	Nanostructures and Nanomaterials	3	0	0	38	3	100
3	MM5262	Biomedical Materials and Devices	3	0	0	38	3	100
4	MM5263	Non-destructive Testing	3	0	0	40	3	100

c) M. Tech Project Part – I

Sl. No	Subject code	Subject Name	Total load (h)	Credit	Marks
1	MM5291	M. Tech thesis Part - I (Term Paper)	8	4	200
2	MM5292	Term Paper Seminar & Viva-voce		2	100

THIRD SEMESTER

Sl. No	Paper	Credit
1	M. Tech Thesis Part – II (Progress Report)	12
2	Progress Report Seminar & Viva-voce	6
	Total Credit	18

Note:

1. For M. Tech Thesis Part – II (Progress Report), the student will submit the details of work done for the M. tech Thesis during the third semester, and findings (if any). Submission will be followed by a seminar and viva-voce.

M. Tech Project Part – II

Sl. No	Subject code	Subject Name	Total load (h)	Credit	Marks
1	MM6191	M. Tech Thesis Part – II (Progress Report)	24	12	300
2	MM6192	Progress Report Seminar & Viva-voce		6	100

FOURTH SEMESTER

Sl. No	Paper	Credit
1	M. Tech Final thesis	22
2	Thesis Seminar & Viva-voce	8
	Total Credit	30

Note:

1. For M. Tech Final thesis, the student will compile the entire work done for the M. Tech Project, along with the findings, in the form of a Thesis and submit at the end of the semester. Thesis submission will be followed by a Thesis seminar and viva-voce.

M. Tech Project Part - III

Sl. No	Subject code	Subject Name	Total load (h)	Credit	Marks
1	MM6291	M. Tech Final thesis	30	22	400
2	MM6292	Thesis Seminar& Viva-voce		8	200

Total Credit: 21 + 21 + 18 + 30 = 90

Note on Subject Code:

XX: Department Code (AE, CE, ME, etc.); YY: Year(Y)-Semester(Y) (51, 52, 61, 62, etc.); ZZ: Subject Code (01 to 49 for Theory subjects, 50-99 for practical subjects. Example: AE5124 [Aerospace Engineering, Fifth Year (PG), First Semester, 24 subject code)

Course Code	MM5101	Course Name	Fundamentals of Materials	Course Category	Core Theory	L 3	Т 0	P 0
Course Offering Department		<u>Metallu</u>	rgy and Materials Engineering	Pre-requisite Courses		NI	L	

Module	Syllabus	Duration(h)
Module-I	Introduction Classification of engineering materials; Elements of crystallography, Bravais lattice & Miller indices, Atomic packing; Crystal imperfections	06
Module-II	Introduction Classification of engineering materials; Elements of crystallography, Bravais lattice & Miller indices, Atomic packing; Crystal imperfections Review of Phase Transformation Phase rule, Types and construction of phase diagrams, Free energy-composition diagrams, Lever Rule, Introduction to ternary system If Fe-C system steel and cast iron microstructures with phase relations Solidification Homogeneous & Heterogeneous nucleation, Growth; Dendritic solidification; Segregation Diffusion Diffusion alaws, Kirkendall effect, activation energy, uphill diffusion <i>etc.</i> Image: Solid-state phase transformation Nucleation and Growth kinetics, T-T-T and C-C-T diagrams Diffusional and diffusion less phase transformation processes Polymorphic transformation, pearlite, bainite and martensite transformations, massive transformation, order-disorder transformation, precipitation, recrystallization	
Module - III	Fe-C system steel and cast iron microstructures with phase relations	06
Module - III Phase rule, Types and construction of phase diagrams, Free energy-composition diagrams, Lever Rule, Introduction to ternary system Module - III Fe-C system steel and cast iron microstructures with phase relations Module - IV Solidification Homogeneous & Heterogeneous nucleation, Growth; Dendritic solidification; Segregation Module -V Diffusion Diffusion Lift phase transformation energy, uphill diffusion etc. Module -VI Solid-state phase transformation Nucleation and Growth kinetics, T-T-T and C-C-T diagrams	06	
Module-V	Diffusion Diffusion laws, Kirkendall effect, activation energy, uphill diffusion <i>etc.</i>	04
Module -VI	Solid-state phase transformation Nucleation and Growth kinetics, T-T-T and C-C-T diagrams	02
Module - VII	Diffusional and diffusion less phase transformation processes Polymorphic transformation, pearlite, bainite and martensite transformations, massive transformation, order-disorder transformation, precipitation, recrystallization	
	Total contact hours	40

Learning Resources	Materials Science and Engineering: W.F. Smith, J. Hashemi and R Prakash, McGraw Hill
	The Science and Engineering of Materials, D.R. Asheland, Springer Science
	Fundamentals of Materials Science and Engineering: W.D. Callister, Jr, John Wiley & Sons, Inc.
	Materials Science and Engineering - A First Course, V. Raghavan, PHI

Course Code	MM5102	Course Name	Characterization of Materials	Course Category	Core Theory	L 3	Т 0	P 0
Course Oj Departm	ffering ent	<u>Metallu</u>	rgy and Materials Engineering	Pre-rea	quisite Cours	es	NI	L

Module	Syllabus	Duration(h)	
Module-I	Introduction Introduction to Advanced material characterization techniques	01	
Module-11	X-ray diffraction pattern analysis Determination of crystal structure, crystal size, lattice parameter, quantitative phase analysis and defect analysis.	08	
Module - III	Advanced optical Microscopy Interference, Phase contrast, polarized light and near field scanning optical microscopy	04	
Module - III Advanced optical Microscopy Interference, Phase contrast, polarized light and near field scanning optical microscopy Module -1V Electron Microscopes Scanning Electron Microscopes and Transmission Electron microscopes, Electron Module-V Scanning probe Microscope Scanning tunneling microscope, Atomic force microscope, Magnetic force microscope Spectroscopy Module-V Spectroscopy Principle and application of Energy dispersive spectroscopy	10		
Module-V	Scanning probe Microscope Scanning tunneling microscope, Atomic force microscope, Magnetic force microscope	05	
Module VI	Spectroscopy Principle and application of Energy dispersive spectroscopy, Auger electron spectroscopy, X ray photo electron spectroscopy, x-ray fluorescence spectroscopy, Raman spectroscopy. Fourirer transform Infrared spectroscopy	08	
Module-VII	Advanced optical Microscopy Interference, Phase contrast, polarized light and near field scanning optical microscopyAdvanced optical Microscopybdule -111Electron Microscopes Scanning Electron Microscopes and Transmission Electron microscopes, Electron diffraction and diffraction pattern analysisIbdule -112Scanning probe Microscope Scanning tunneling microscope, Atomic force microscope, Magnetic force microscope Scanning tunneling microscope, Atomic force microscope, Magnetic force microscope, Principle and application of Energy dispersive spectroscopy, Auger electron spectroscopy. X ray photo electron spectroscopy, x-ray fluorescence spectroscopy, Raman spectroscopy. Fourirer transform Infrared spectroscopy Dodule-VIIThermal Characterization techniques DSC, DTA-TGA, principles and applicationsTotal contact hours		
	Total contact hours	40	

	Elements of X-ray diffraction: B.D Cullity
Learning Resources	Materials Characterization: Introduction to Microscopic and Spectroscopic Methods,
	Yang Leng
	Transmission Electron Microscopy, David B Williams, and C. Barry Carter
	Scanning Electron Microscopy, Garrett Thomas

Course		Course	Thermodynamics and Kinetics of	Course	Core	L	Т	Р
Code	MM5103	Name	Materials	Category	Theory	3	0	0
Course Offering Department		<u>Metallu</u>	rgy and Materials Engineering	Pre-rea	Pre-requisite Courses		NI	L

Module	Syllabus	Duration(h)			
Module-I	Basics of statistical thermodynamics and derivation of thermodynamics quantities	05			
Module-II	<i>ule-II</i> Laws of thermodynamics, activity, equilibrium constant, application to metallurgical systems.				
Module-III	Thermodynamics of solutions and phase equilibria.	10			
Module-IV	Thermodynamics of electrochemical cells and degradation phenomena.	04			
Module-V	Thermodynamics of surfaces, interphases and defects.	04			
Module-VI	Basic kinetic laws, rate constants and rate limiting steps.	04			
Module-VII	Experimental and theoretical techniques in thermodynamics of materials.	05			
	Total contact hours	40			

Learning
ResourcesStatistical mechanics: A survival guide, A. M. Glazer and J. S. Wark, Oxford University Press.Introduction to the Thermodynamics of Materials, David R. Gaskell, Taylor and Francis.A Textbook of Metallurgical Kinetics, Sudipto Ghosh and Ahindra Ghosh, PHI Eastern Economy
edition.S.K. Bose and Sanat Roy, IIM, Springer Verlag
Darken and Gurry

Course		Course		Course	Departmental	L	Т	Р
Code	MM5121	Name	Functional Materials	Category	Elective	3	0	0
Course Offering		<u>Metallu</u>	rgy and Materials	Dro-ro	oquisito Coursos		ND	T
Department		Enginee	ering	Pre-requisite courses			NIL	

Module	Syllabus	Duration(h)
Module-I	Overview of functional Materials, structure properties and their classification.	02
Module-II	Ferroelectric, Piezoelectric and Piezoelectric Materials: Perovskite structure and spontaneous polarization, relationship of ferroelectrics and piezoelectric to crystal symmetry, Devices based on piezoelectric property, Piezoelectric composites, Pyroelectric materials and devices	08
Module-III	Shape Memory Alloys: Structural Thermo-elastic Phase Transition in Shape Memory Alloys, Dependency Between Microstructure and Elastic Behavior of SMA, Discontinuous Change of Physical Properties— Martensitic Phase Transition, Different Approaches to Describe the Shape- Memory Effect, Quantitative Models for Shape Memory Alloys	06
Module- IV	Magnetorheological and Electrorheological Fluids: Viscoelastic Properties and Basic Rheology, Some Rheological Models, Understanding the Microscopic Structure of ERF and MRF, ER- and MR-effect Explained by the Interaction of Induced Dipoles, Applications—Switchable Fluid Acting as a Valve	06
Module-V	Nanostructured functional materials: Semiconducting oxide films, Metallic nanoparticles, Carbon-based nanostructured materials for energy storage and conversion	06
Module-VI	Functionally graded materials and their applications.	04
	Total contact hours	32

	The Physics of Multifunctional Materials Concepts, Materials, Applications, Martin Gurka
Learning	
Resources	Nanostructure Multifunctional Materials by Esteban A. Franceschini

Course		Course		Course	Departmental	L	Т	Р
Code	MM5122	Name	Composite Materials	Category	Elective	3	0	0
Course Offering Department		<u>Metallu</u> Enginee	rgy and Materials ering	Pre-re	equisite Courses		NI	L

Module	Syllabus	Duration(h)
Module-I	Introduction Definitions of composites, reinforcements and matrices, Types of reinforcements, Types of matrices, Types of composites, Carbon Fibre composites, Properties of composites in comparison with standard materials, Applications of metal, ceramic and polymer matrix composites.	8
Module-II	Manufacturing methods Hand and spray lay - up, injection molding, resin transfer moulding, filament winding, pultrusion, centrifugal casting and prepregs. Characterization of systems: carbon fibre/epoxy, glass fibre/polyester etc.	6
Module-III	Design of composites In-situ and ex-situ composites; Interfaces between reinforcements and matrices in composites; Bonding Mechanisms, Bond Strength, Interfacial Toughness.	6
Module- IV	Mechanical Properties Stiffness and Strength, Geometrical aspects – volume and weight fraction. Unidirectional continuous fibre, discontinuous fibers, Short fiber systems, woven reinforcements – Mechanical Testing: Determination of stiffness and strengths of unidirectional composites; tension, compression, flexure and shear.	8
Module-V	Laminates Plate Stiffness and Compliance, Assumptions, Strains, Stress Resultants, Plate Stiffness and Compliance, Computation of Stresses, Types of Laminates -, Symmetric Laminates, Antisymmetric Laminate, Balanced Laminate, Quasi-isotropic Laminates, Cross-ply Laminate, Angle-ply Laminate. Orthotropic Laminate, Laminate Moduli, Hygrothermal Stresses	8
Module-VI	Joining Methods and Failure Theories Joining – Advantages and disadvantages of adhesive and mechanically fastened joints. Typical bond strengths and test procedures.	4
	Total contact hours	40

	1. F. L. Matthews and R. D. Rawlings: Composite Materials: Engineering and Science : Woodhead Publishing Limited.
Learning Resources	2. R. M. Jones, Mechanics of Composite Materials, CRC Press
	3. M. Mukhopadhyay, Mechanics of Composite Materials, University Press
	4. I. S. Daniel and Ori Ishai, Engineering Mechanics of Composite Material , Oxford University Press
	5. K. K. Chawla: Composite Materials: Science and Engineering: Springer

						L	Т	Р
Course Code	MM5123	Course Name	Surface Degradation and Protection	Course Category	Departmental Elective	3	0	0
Course Offering Department		<u>Metallu</u> Enginee	rgy and Materials ering	Pre	-requisite Courses		NI	L

Module	Syllabus	Duration(h)
Module-I	An introduction: Technical and economic aspect of the study of surface degradation.	2
Module-II	Electrochemical principles of corrosion cell; exchange current density; electrode potential and standard cells, EMF series and galvanic series— their applications, application of Faraday's law in corrosion.	4
Module-III	Thermodynamics of corrosion: Pourbaix diagram constriction and application, Polarization: types, factors involved, effect on degradation rate; Passivation: factor involved, effect on degradation rate	8
Module-IV	Mixed Potential theory; Tafel equation, construction and interpretation of Polarization diagrams.	6
Module-V	Different forms of degradation -uniform attack, galvanic, crevice, pitting, intergranular, selective leaching, erosion corrosion and stress corrosion cracking, Hydrogen effect, corrosion fatigue and microbes induced corrosion. Liquid metal embrittlement-their characteristic features, causes and remedial measures. Surfce degradation testing methods and interpretation of results.	8
Module-VI	High temperature surface degradation — Mechanism to formation films on the surface, Ellingham diagrams, Pilling-Bedworth ratio, and their effects on kinetics, oxide defect structures, rate laws, types of oxidation, materials for use at elevated temperatures.	6
Module-VII	Degradation by wear of materials; its characteristics, wear testing and measurement, Wear-resistant materials	3
Module-VII	Preventive measurement of surface degradation: material selection and design aspects; control of environment including inhibitors, cathodic and anodic protection, coatings and other surface protection techniques of metals and alloys.	4
	Total contact hours	40

	Principles and Prevention of Corrosion, Denny A. Jones, Prentice-Hall
	Corrosion Engineering, 3rd Ed., Mars G. Fontana, McGraw-Hill, Singapore.
	Corrosion and its Control, 3rd Ed., H.H. Uhlig and R.W. Revie, John Wiley, Singapore.
Learning Resources	Stress corrosion cracking : Theory and Practice , V S Raja and T Shoji (eds), Woodhaed Publishing Limited, Oxford.
	Corrosion Failures: Theory, Case Studies and Solutions , K.E. Perumal and V.S. Raja; John Wiley & Sons, USA 2
	A.S. Khanna, Introduction to High Temperature Oxidation and Corrosion , ASM International, Materials Park, Ohio

Course		Course		Course	Departmental	L	Т	Р
Code	MM5124	Name	Iron and Steel Making	Category	Elective	3	0	0
Course Of	ffering	<u>M</u>	letallurgy and Materials	Dno n	anicita Courcas		NI	T
Department			Engineering	Pre-requisite Courses		INI	L	

Module	Syllabus	Duration(h)
Module-I	Up gradation of raw materials: Washing of Ore & Coal; Advances in Agglomeration of Iron Ores – process control and current innovations. Characteristics of suitable Raw Materials.	03
Module-II	Blast furnace (BF) Iron Making- Design Features of BF and supporting units, viz. Coke Ovens, Stoves, Gas Cleaning Systems. Recent Trends in Iron Making; Gas – Solid and Slag Metal Reactions; Sponge Iron Making.	04
Module-III	Reduction Mechanism and Equilibrium in Carbon-Oxygen System; Slag formation - Chemistry and Characteristics; Reserve Zones, Cohesive Zone and their Importance.	04
Module- IV	Modern trends to Minimize Coke Rate and Emissions; Injection techniques; Blast furnace (BF) Irregularities and Remedies. Treatment of Slag and Outgoing Gas.	04
Module-V	Alternate routes of Iron making - Direct reduced iron (DRI); Gas based and Coal-Based DRI; Hot Briquetted Iron (HBI); Problems and prospects of DRI in India.	04
Module-VI	Steel making: Principles of Refining, Steel making in Basic Oxygen Blown Converters, Kinetics of Reactions and Lance Design.	04
Module-VII	Arc furnace Steel Making - Production of Alloy Steels; Induction Furnace Steel Making: Use of DRI in Steel Making.	03
Module-VIII	Secondary Steel Making - Quality, Continuous Steel Making; Continuous Casting; Vacuum Degassing and Electro Slag Re-melting de-oxidation and de-sulphurization; Vacuum techniques – Re-melting and Refining; Injection Metallurgy.	04
Module-IX	Inclusion removal and its modification. Casting of ingots and Continuous Casting. Defects and Remedies.	04
Module-X	Energy and Environmental aspects in Steel Making, concept of Zero CO ₂ Emission.	02
Module-XI	Latest Developments in Iron and Steel Making Processes.	04
	Total contact hours	40

	An Introduction to Modern Iron Making - R. H. Tupkary
	An Introduction to Modern Steel Making - R. H. Tupkary
	Principles of Blast Furnace Ironmaking: Theory and Practice - A. K. Biswas
Learning	Ironmaking and Steelmaking: Theory and Practice - Ahindra Ghosh and Amit Chatterjee
Resource	^s A.K. Chakrabarty, Prentice-Hall
	Steel MakingA.K. Chakrabarti (Prentice Hall of India)
	Principles of Metallurgical Thermodynamics S.K. Bose and S.K. Roy (Springer).

Course	MM5125	Course	Sustainable Materials	Course	Departmental	L	Т	Р
Coae		name	Manufacturing	Calegory	Elective	3	0	0
Course Offering Department		<u>fetallurgy</u>	and Materials Engineering	Pre-re	quisite Courses		NL	L

Module	Syllabus	Duration(h)
Module-1	Introduction to the Course A brief history of manufacturing, commerce and sustainability	2
Module-2	Basic concepts on of sustainability, manufacturing, operations, processes, practices, Resources in manufacturing. Supply chain operations	6
Module-3	Carbon Footprint of Materials Manufacturing CO2 and greenhouse gases emissions in the manufacturing sector. Major CO2 emitting industries and calculation of carbon-footprint associated with manufacturing industries (emphasis on Steel and Aluminium industry). Alternative approaches for metal production with limited and/or reduced carbon footprint.	6
Module-4	Design of Materials and Manufacturing for Resource Efficiency Issue of limited materials resources, Socio-economic issues related to mineral resources. Concepts of optimization, numerical optimization through simulation. <i>Case</i> <i>studies</i> related to dependence on Li for battery materials and rare-earth for magnetic and structural materials.	6
Module-5	Life Cycle Analysis Basic steps on Life Cycle Analysis-Goal definition, Analysis, Assessment and Interpretation. <i>Case studies</i> on Life Cycle Analysis on Wind Farm Materials, Microelectronics Materials, etc.	6
Module-6	Modern approaches for Sustainable Manufacturing Green manufacturing techniques: dry and near-dry machining, edible oil based cutting fluids, cryogenic machining for eco-efficiency. Implementation of lean methods. Simulation for sustainable manufacturing, Building a smart green factory: simulation techniques.	6
Module-7	Recycling of Materials Different types of materials environmental impact during different parts of their life- cycle including waste management and materials recycling. Toxicological aspects of material production and usage.	4
	Total	36

Learning	Sustainable Manufacturing: Concepts, Tools, Methods and Case Studies, S. Vinodh, CRC Press, 2020
resources	Sustainable Manufacturing and Remanufacturing Management: Process Planning, Optimization and Applications, W. Li, S. Wang, Springer, 2017
	Sustainable Manufacturing, K. Salonitis, K. Gupta, Elsevier, 2021 Sustainability in Manufacturing Recovery of Resources in Product and Material Cycles; G. Seliger, Springer, 2007 Strategies for improving sustainability of structural materials, D. Raabe, C. CemTasan, E. A. Olivetti, Nature, 575 (2019) 64-74.

Course		Course		Course	Departmental	L	Т	Р
Code	MM5123	Name	Additive Manufacturing	Category	Elective	3	0	0
Course Offering		Metallu	rgy and Materials	Duo u	anisita Convega		NI	T
Department		Enginee	ering	Pre-re	equisite courses		111	L

Module	Syllabus	Duration(h)
	Introduction to Additive Manufacturing (AM)	07
Module-I	Introduction, evolution of AM, distinction between AM & traditional manufacturing processes, advantages of AM.	
Module-11	Classification of AM Prototyping, Rapid Manufacturing: indirect manufacturing, extrusion-based, powder bed fusion, directed energy deposition, laser AM processes, classification, processing philosophy, and metallurgical mechanisms, electron beam technology, plasma arc, other sources	14
	Materials science for AM	07
Module-III	Atomic structure and bonding, metal and ceramic powders, compaction and sintering of powders, composites, role of solidification rate, evolution of non-equilibrium structure, microstructural studies, structure property relationship.	
Module- IV	Guidelines for Process Selection Introduction, selection methods and challenges for a part, process planning and control,	07
	selection of AM technologies using decision methods	
	Post Processing of AM Parts	05
Module-V	Support material removal, improvement of surface texture, accuracy and aesthetics, preparation for use as a pattern, property enhancements using non-thermal and thermal techniques, industry 4.0 and digital twins.	
	Total contact hours	40

	Reference texts: 1. Ian Gibson, David W Rosen, Brent Stucker., " Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing ", 2nd Edition, Springer, 2015.
I parnina	2. Patri K. Venuvinod and Weiyin Ma, " Rapid Prototyping: Laser-based and Other Technologies ", Springer, 2004.
Resources	3. Chua Chee Kai, Leong Kah Fai, " 3D Printing and Additive Manufacturing: Principles & Applications ", 4th Edition, World Scientific, 2015.
	4. D.T. Pham, S.S. Dimov, Rapid Manufacturing: The Technologies and Applications of Rapid Prototyping and Rapid Tooling , Springer 2001.
	5. Rafiq Noorani, Rapid Prototyping: Principles and Applications in Manufacturing , John Wiley & Sons, 2006.

Course		Course	Mechanical Behaviour of	Course	Open	L	Т	Р
Code	MM5161	Name	Engineering Materials	Category	Elective	3	0	0
Course Offering		Motallu	ray and Matorials Engineering	Dro-ro	nuisita Coursa	c	NI	ı
Department		metallu	itgy and materials Eligneering	ing Pre-requisite Courses		3	111	L

Module	Syllabus	Duration(h)
	Introduction to deformation and failure	
Module-I	Concept of stresses and strains; Engineering and true stresses and strains; Different types of loading and temperatures encountered in engineering applications; Mechanical behaviour and failure of metals, alloys, ceramics, polymer and composites materials	08
	Elastic deformation	
Module-II	State of stress and strain; Principal stress and strain; elastic stress-strain relation; Elastic behaviour of engineering materials	06
	Plastic deformation	
Module-III	Hydrostatic and deviatoric stress; Octahedral stress; Effective stress and strain; Yield criteria; Mohr circle; Plastic stress-strain relation;	06
	Mechanisms of plastic deformation	
Module- IV	Crystal defects; Dislocation; Geometrical and statistical dislocations; Dislocation multiplication; Dislocation reactions; Slip and twinning; Critical resolved shear stress; Strain hardening; Hall-Petch relationship	08
	Fracture	
Module-V	Fracture in engineering materials; Modes and mechanisms of fractures; Linear elastic fracture mechanisms; Elastic-plastic fracture mechanisms; Measurement of fracture toughness	08
	Fatigue	
Module-VI	Types of dynamic loading; S-N curves; Classification of fatigue; Fatigue of engineering materials; Mechanisms of fatigue failure; Fatigue life prediction	06
	Сгеер	
Module-VII	Time dependent deformation; Different stages of creep; Creep and stress rupture; Creep mechanisms and maps; Design of materials for high temperature applications	06
	Total contact hours	40

		Deformation and Fracture Mechanics of Engineering Materials : R.W. Hertzberg, John Wiley and Sons
		Mechanical Metallurgy, G.E. Dieter, McGraw-Hill
	Learning	Mechanical Behavior of Materials: M.A. Meyers, K K. Chawla, Cambridge Press
	Resources	Fatigue of Materials: S. Suresh, Cambridge Univ. Press
		Mechanical Behavior of Materials: N. E. Dowling, Prentice-Hall.
		Fracture Mechanics: Fundamentals and Applications: T.L. Anderson, CRC Press
н		

Course		Course	Selection of Engineering	Course		L	Т	Р
Code	MM5162	Name	Materials	Category	Open Elective	3	0	0
Course Offering		Metallu	rgy and Materials	Dno n	anicita Courcas		NI	T
Department		Enginee	ering	Pre-requisite courses		111	L	

Module	Syllabus	Duration(h)		
Module-I	Material Dependence (Introduction): Materials Brief History, Classification of materials, Materials and Environment, Materials – Energy carbon triangle, Material lifecycle	4		
Module-II	Material Properties: Material for mechanical properties (Material for static strength, toughness, stiffness, fatigue and Creep resistance)			
Module -III	Material for surface durability (Material for corrosion and wear resistance)	6		
Module-IV	Material Selection strategy: Principle of material selection, selection criteria and material property charts, trade of methods (Resolving conflicting objectives), Modulus- density charts, The Strength-Density chart, The Modulus-Embodied energy and Strength-Embodied energy charts, The Modulus-Carbon footprint and Strength- Carbon footprint charts, The Thermal conductivity-Thermal diffusivity chart	10		
Module- V	Case Studies: Material for drink containers (e.g., Carbonated drinks), Materials for building, Materials for heating and cooling (Solar heating, kilns, Cyclic heating), Materials for transport (Crash barrier, light weight structures, material substitution for eco-efficient design)	10		
Module-VI	Renewable materials: Mineral based material, Vegetable-derived materials — (wood and wood-like materials, fibres), Bio-derived materials (Biopolymers, Bio-composites)	2		
	Total contact hours	40		

	1. Ashby M.F., Materials and the Environment	
Learning	2. F. A. A. Crane, J. A. Charles, Selection and Use of Engineering Materials	Docian
Resources	5. Asiloy M.F., Sherchin H., Gebon D., Materials. Engineering, Science, Processing and	Design

Course		Course	Course		L	Т	Р	
Code	MM5163	Name	Joining of Materials	Category	Open Elective	3	0	0
Course Offering		Metallurgy and Materials		Pro-requisite Courses			NII	
Department		Enginee	ering	Pre-requisite Courses		NIL		

Module	Syllabus	Duration(h)
Module-I	Introduction to joining, mechanical joining, threaded and unthreaded joints, calculation of stresses. Adhesive bonding, mechanism of adhesive bonding	8
Module-II	Welding: classifications in welding, Arc welding, resistance welding, Oxy-fuel welding, Laser-beam welding, Electron beam welding, Diffusion welding, Friction welding, Ultrasonic welding	10
Module-III	Brazing: Torch Brazing, Furnace Brazing, Dip Brazing, Induction Brazing, Resistance Brazing, Microwave Brazing, Choice of Filler material	5
Module- IV	Soldering: Different types of soldering, Metallurgy of soldering alloys, Lead-tin and antimony binary and ternary alloy	5
Module-V	Heat transfer during Welding, Microstructural changes due to Welding, Brazing and Soldering	5
Module-VI	Joining in Ceramics, Glasses and Polymers	7
	Total contact hours	40

Learning Resources	1. Joining of Materials and Structures by Robert W. Messler, Jr., Elsevier.
	2. Welding Processes and Technology by Parmar R.S., Khanna Publishers, Delhi.
	3. Metallurgy of Welding by J. F. Lancaster, Woodhead Publishing
	4. Principles of Welding Technology, by L. M. Gourd, Viva Books, New Delhi.

Course		Course		Course	Laboratory	L	Т	Р
Code	MM5171	Name	Fundamentals of Materials Lab.	Category	I	0	0	2
Course Offering Department		<u>Metallu</u>	rgy and Materials Engineering	Requ	isite Courses		ММ0	901

Module	Syllabus	Duration(h)
Lab. I	Metallographic Sample Preparation -I: Sectioning, Mounting, Grinding, Polishing,	03
Lab. I	Metallographic Sample Preparation -II: Fine polishing, Electro-polishing, Etching	03
Lab. III	Optical Microscope and microstructural characterization	03
Lab. IV	Microstructure of ferrous materials	03
Lab. V	Microstructures of non-ferrous materials	03
Lab. VI	Image Analyses	03
Lab. VII	Bulk Hardness Testing I	03
Lab. VIII	Bulk Hardness Testing II	03
Lab. IX	Microhardness Testing	03
Lab. X	Impact Testing	03
Lab. XI	Tensile Testing	03
	Total contact hours	33

Learning Resources	Metallographic Specimen Preparation: Optical and Electron Microscopy, J. L. McCall, Springer
	Metallography Principles and Practice: G. F. Vander Voort, ASM International
	Testing of Metallic Materials: A. V. K. Suryanarayana, PHI Pub.

Course	MM5172	Course	Characterization of Materials	Course	Laboratory	L	Т	P
Code		Name	Lab.	Category	II	0	0	2
Course Offering Department		<u>Metallu</u>	rgy and Materials Engineering	Requ	isite Courses		MMO	902

Module	Syllabus	Duration(h)
Lab. I & II	X-ray diffraction pattern analysis : Crystal structure, size and precise lattice parameter determination.	06
Lab. III & IV	Optical microscopy : Sample preparation and microstructural characterization.	09
Lab. V & VI	Electron Microscopes : Scanning Electron Microscopes and Transmission Electron microscopes, Image and diffraction pattern analysis	06
Lab. VII & VIII	Scanning probe Microscope : Scanning tunnelling microscope, Atomic force microscope, Magnetic force microscope demonstration	09
Lab. IX & X	Thermal Characterization techniques : DSC, DTA-TGA demonstration and analysis	06
	Total contact hours	30

Learning Resources	B.D Cullity: Elements of X-ray diffraction Yang Leng: Materials Characterization: Introduction to Microscopic and Spectroscopic Methods David B Williams, C. Barry Carter, Transmission Electron Microscopy
-----------------------	--

Course Code	MM5173	Course Name	Mini Project	Course Category	Laboratory II	L 0	Т 0	Р 3
Course Oj Departm	ffering ent	<u>Metallu</u>	rgy and Materials Engineering	Pre-Re	quisite Cours	es	NI	L

Module	Syllabus	Duration(h)
	Course structure to be decided by the concerned faculty member on the basis of the topic selected by the student.	
	Total contact hours	30

Course Code	MM5201	Course Name	Manufacturing Processes	Course Category	Core Theory	L 3	Т 0	P 0
Course Offering Department		<u>Metallu</u>	rgy and Materials Engineering	Pre-req	uisite Cours	es	NI	L

Module	Syllabus	Duration(h)			
	Introduction to manufacturing processes				
	Product design process; Computer-aided design; Selection of materials and manufacturing	02			
Module-I	processes; Inter-relation amongst chemistry-processing-property-performance; Computer	02			
	Integrated Manufacturing; Quality assurance; Total Quality Management; Green				
	manufacturing				
	Metal Casting Processes	05			
Module-II	Fundamental of metal casting; Cast structure; Casting processes; Sand casting; Permanent	05			
	mold casting; Rapid solidification; Casting defects				
	Forming and Shaping Processes				
Modulo III	Fundamental of metal forming; Hot, warm and cold working; Forming and shaping practices -	05			
mouule-III	forging, rolling, extrusion, wire drawing, sheet metal forming; Equipment; Die materials and				
	design; Defects; Residual stresses; Economics of forming				
	Machining Processes				
Module-IV	Mechanics of cutting; Chip formation; Cutting force and power; Turning process; Laths and	04			
	their operations; Tool materials; Tool wear and failure; Tool life; Machinability				
	Joining Processes				
Modulo V	Fundamental of joining; Classification of joining; Fusion welding - Oxyfuel Gas welding, Arc	04			
mouule-v	Welding, TIG, MIG; Solid-state joining- Diffusion bonding, Friction stir welding, Resistance				
	welding; Weldability; Carbon equivalent; Inspection, quality control and testing;				
	Processing of non-metals				
	Glass working: Raw materials, melting, shaping, heat treatment and finishing.				
	Plastic shaping: Extrusion, production of sheet and film, production of fiber and filament,				
Module-VI	coating processes, injection molding, polymer foam processing and forming.	06			
	Rubber processing: Rubber processing and shaping, manufacturing of tires and other rubber				
	products.				
	Case studies				
	Non-equilibrium processing				
	Thermodynamics and kinetics of metastable phase formation				
	Rapid solidification: methods; constitution and microstructure formation; properties,				
	performance, and applications of rapidly solidified materials				
	Mechanical alloying: Process; mechanism; consolidation; synthesis of non-equilibrium				
Module-VII	phases; applications	08			
	Chemical Vapor Deposition: Gas-phase transport and reactivity; Solid phase formation;				
	applications				
	Physical Vapor Deposition: Deposition methods; Influence of energy on coating,				
	Applications, future trends				
	Case studies				
	Processing of Integrated Circuit				
	Clean room and Process sequence				
	Silicon processing: raw material; MGS to EGS conversion; Crystal growth, cleaning				
	Litnography: Photolithography and other lithography techniques	06			
moaule-viii	Oxidation: Thermal oxidation, kinetics of oxidation, different types of oxidation				
	Doping: Diffusion, ion-implantation				
	Metallization Testing and pagkaging				
	Lesung and patkaging Case studies				
	Last sinuits Total contact hours	40			
L	i otal contact nours	40			

	Manufacturing Engineering and Technology, S Kalpakjian and S Schmid, 7th Ed., Pearson
Logming	Fundamentals of Modern Manufacturing, Mikell P. Groover
Decourage	Materials and Processes in Manufacturing, DeGarmo, Black, and Kohser, Wiley & Sons, Inc,
Resources	Non-equilibrium processing of materials, C. Suryanarayana
	Device Electronics for Integrated Circuit, R. S. Muller, T. I. Kamins and M. Cha

Course	Course		Mechanical Behaviour of	Course		L	Т	Р
Code	MM5202	Name	Materials	Category	Core Theory	3	0	0
Course Offering		Metallu	rgy and Materials	Duo u	auisita Coursea		NI	T
Department		Enginee	ering	Pre-requisite Courses		NIL		

Module	Syllabus	Duration(h)
Module-I	Review of Basic Mathematics Vectors and tensors, dot and cross products; rotation of vectors and tensors; calculation of eigenvalues and eigenvectors; introduction to programming using MATLAB	4
Module-II	Theory of Elasticity Definition of stress and strain in 2-dimensions and in 3-dimensions; Mohr's circle of stress in two-dimensions; hydrostatic and deviatoric components of stress and strain; conversion of stresses to strains and vice-versa in elastic regime; Definition of elastic stiffness tensor for anisotropic materials; Micromechanics of linear elastic composites	8
Module-III	Theory of Plasticity Yield criteria in metals, ceramics and polymers; yield locus in 2D and in 3D; Octahedral stresses and strains; Levi-Mises and Prandtl-Reuss equations; yielding of anisotropic materials;	8
Module- IV	Microstructural Aspects of Plasticity Plasticity in single crystals; calculation of critical resolved shear stress; use of stereographic projection; Dislocations, interaction of dislocations; Twins; Stacking Faults	8
Module-V	Strengthening Mechanisms Strain hardening, grain boundary strengthening, solid solution strengthening, second phase strengthening	4
Module-VI	Fracture Fracture mechanisms, linear elastic fracture mechanics, toughening mechanisms	8
	Total contact hours	40

	Mechanical Behaviour of Materials, T. H. Courtney, Waveland Press
	Deformation and Fracture Mechanics of Engineering Materials : R.W. Hertzberg, John Wiley and Sons
Learning	Mechanical Metallurgy, G.E. Dieter, McGraw-Hill
Resources	Mechanical Behavior of Materials: M.A. Meyers, K K. Chawla, Cambridge Press
	Physical Properties of Crystals: Their Representation by Tensors and Matrices , J. Nye, Clarendon Press Getting Started with MATLAB , R. Pratap, Oxford University Press

Course		Course	Multiscale Materials	Course		L	Т	Р
Code	MM5203	Name	Modelling	Category	Core Theory	3	0	0
Course Offering		Metallu	rgy and Materials	Dno n	auisita Coursos		NI	T
Department		Enginee	ering	Pre-re	equisite courses		111	L

Module	Syllabus	Duration(h)
	Mathematical description of physical phenomena-basics of partial differential	
	equations, statistical techniques and numerical analysis.	
Module-I	Basics of optimization schemes: Simplex method, Steepest-descent Method,	06
	Conjugate Gradient Method, Newton-Raphson Method and Genetic Algorithm based schemes.	
	Schemes of modelling- empirical, phenomenological and mechanistic approach of	
Module-II	modelling. Deterministic, stochastic and probabilistic modelling approach of	06
	materials modelling.	
	Quantum mechanics based materials modelling approach – Applications of	
Module-III	Density Functional Theory in materials modelling. Issue of convergence in Density	03
	Functional Theory calculations.	
	Atomistic modelling approaches. Classical interatomic potentials and their	
Module- IV	application for simulation of materials. Basics of Molecular Dynamics and Monte	02
	Carlo approach.	
	Mesoscale approach for materials modelling- Basics of Finite Difference and	
Module-V	Finite Element Method. Application of Finite Element Method for studying multi-	04
	physics phenomena. Cellular Automata and its application in Materials Engineering.	
	Coupling of scales for development of multiscale materials models for structure-	0.0
Module-VI	property correlation in materials science and manufacturing. Uncertainty	08
	quantification in multiscale modelling-traditional and Bayesian approaches.	
	Lase-studies:	
	1. Integrated Computational Materials Engineering (ICME) approach for studying	05
Module-VII	plasticity in materials.	05
	2. Multiscale modelling of design of high temperature material for turbine	
	Machine Learning in Materials Science	
	Introduction to Machine Learning Data Pre-processing Supervised Learning	
Module VIII	Algorithms including Artificial Neural Networks Linear Regression and Bayesian	06
moaule-vill	classification and Hidden Markov Models Unsupervised Learning Algorithms	00
	Ontimization techniques, Evolutionary algorithms	
	opunization teeninques, Evolutional y algorithmis.	
	Total contact hours	40

s.
nodelling to
lley
r

Course		Course		Course	Departmen	L	Т	Р
Code	MM5221	Name	Design and Selection of Materials	Category	tal Elective	3	0	0
Course Offering Department		<u>Metallu</u>	rgy and Materials Engineering	Pre-re	quisite Cours	es	NI	L

Module	Syllabus	Duration(h)
Module-I	Relationship between processing-structure-properties of various engineering materials	04
Module-II	Materials selection criteria-shape, micro structural factors, performance criteria in service and other strategic requirements of engineering components to be designed. Economic considerations	10
Module-III	Technologically important material properties: physical, mechanical, chemical, thermal, optical and electrical properties	06
Module-IV	Materials used in important engineering sectors	04
Module-V	Types of design, materials data and design tools	05
Module-VI	Methodology for selection of materials for the components, selection of processes to meet the design requirements	05
Module-VII	Systematic selection process-pertinent case studies, Multiple constraints; its handling strategies	04
	Total contact hours	38

	Engineering Design: A materials and processing approach: George E Dieter. McGraw-Hill Pub.
Learning	Materials & Design: Michael Ashby and Kara Johnson. Elsevier Pub.
	Materials and Process Selection for Engineering Design: Mahmoud M. Farag. CRC Press Pub.
Resources	Materials Selection and Design, Md AbdulMaleque and MohdSapuanSalit, Springer.
	Selection and Use of Engineering Materials : F A A Crane, J A CharlesJ. Furness. Butterworth- Heinemann Pub.

Course		Course		Course	Departmen	L	Т	Р
Code	MM5222	Name	Energy Materials	Category	tal Elective	3	0	0
Course Offering Department		<u>Metallu</u>	rgy and Materials Engineering	Pre-req	uisite Course	S	NI	L

Module	Syllabus	Duration(h)
Module-I	Properties of Materials Electronic and Electric Properties: free electron theory, fermi energy density of states, elements of band theory, dielectric, piezoelectric, pyroelectric and ferroelectric effect. Magnetic properties: origin of magnetism, para-, dia-, ferro and ferri-magnetisms. Thermal Properties: specific heat, thermal conductivity and thermal expansion, thermoelectricity. Optical and optoelectronic properties. Superconductivity.	10
Module-II	Basics of fuel cells and electrochemical devices Mechanism and materials for different types of batteries, supercapacitor and hybrid fuel cells (Polymer membranes for fuel cells, PEM fuel cell, Acid/alkaline fuel cells.), electrochemical and photoelectrochemical water splitting.	4
Module-III	Basics of batteries Details of Pb-acid Nickel-metal hydride (Ni-MH), NiCd-alkaline battery, Ni-iron, Li/Na-ion, Mg-ion, Li/Na-S batteries, Metal-air battery, battery maintenance and safety precautions. Application of phase-change materials for energy conservation.	6
Module-III	Basics of solar cells ; thin-film solar cells, Nano-, micro- and poly-crystalline Si for solar cells, mono-micro silicon composite structure, crystalline silicon deposition techniques, material and solar cell characterization,	6
Module-IV	Advanced solar cell concepts and technologies Amorphous silicon thin-film technologies, multi-junction (tandem) solar cells, stacked solar cells. Conjugated polymers, organic/plastic/flexible solar cells, polymer composites for solar cells, device fabrication and characterization	4
Module- V	Energy harvesting materials and their applications : Thermoelectric materials, Triboelectric materials, Piezoelectric materials, and Magnetoelectric materials	8
Module-VI	Advanced Energy materials: Materials used in Nuclear Power PlNTA; Materials used for storage of Hydrogen(MOF & COF)	2
	Total contact hours	40

	Energy Materials, Ed. Duncan W. Bruce, Dermet O'Hare, Richard I. Walton, Wiley, 2011.
Learning	Energy Storage and Conversion Materials, Ed. Stephan Skinner, RSC Publications, 2020.
Resources	Solar Cells and Energy Materials, Takeo Oku, De Gruyter, 2017.

Course		Course	Surface Treatment and	Course	Departmental	L	Т	Р
Code	M5223	Name	Modification	Category	Elective	3	0	0
Course Offeri Department	ing	<u>Metallu</u> Engine	rgy and Materials	Pre-re	equisite Courses		NI	L

Module	Syllabus	Duration(h)
Module-I	Introduction	04
	Conventional Materials Engg., Types of Surface Modifications, Physical Modifications, Chemical Modifications, Applications of Materials Engg. towards Nanomaterials, Structure, Defects in solids, Bonds and Bands in Materials, Thermodynamics of Materials, Kinetics, Nucleation	
Module-II	Vacuum Science and Technology	06
	Kinetic Theory of Gases, Gas Transport and Pumping, Vacuum Technology	
Module -111	Thin-film Evaporation Processes	06
	Physics and Chemistry of Evaporation, Film Thickness Uniformity, Evaporation Processes and Applications	
Module-IV	Discharges, Plasma, and Ion-Surface Interactions	04
	Plasma Discharges and Arcs, Fundamentals of Plasma Physics, Reactions in Plasmas, Physics of Sputtering, Ion bombardment modification of growing films	
Module-V	Chemical Vapor Deposition	04
	Reaction types, Thermodynamics of CVD, Gas transport, Film growth kinetics, Thermal CVD, Plasma-enhanced CVD	
Module-VI	Metal and metal-hybrid-composite Coating	
	Criteria for material selection, Electroplating, Galvanizing, Aluminizing, Metal Cladding. Merits, Industrial coating application technologies, Demerits, Types and Applications of each.	08
Module-VII	Polymer, hybrid, and paint coating	
	Requirement for organic coating, Concept of thin organic coating, organic/inorganic hybrid coating, concept of paint technology, Industrial coating application technologies, Merits, Demerits, Types and Applications of each	05
Module-	Characterization of coatings and surfaces	
VIII	Adhesion, Wear, Corrosion, Oxidation, Porosity, Roughness, surface defects, Residual Stress, Stability. Surface Microscopy, Scanning Probe Microscope to determine topology, X-ray photoelectron and Auger Spectroscopy, Atomic Force microscopy, Kelvin probe, Raman, Use of TEM in thin film analysis and other Spectroscopic Analysis	10
	Total contact hours	38

Learning	Materials Science of Thin Films, Milton Ohring, CRC Press
Resources	Polymer Coatings: A Guide to Chemistry, Characterization, and Selected Application, Gijsbertus
	de With, Wiley

ſ

Course		Course		Course	Departmental/	L	Т	Р
Code	MM5224	Name	Joining Technology	Category	Specialization Elective	3	0	0
Course Offering Department		<u>Metallu</u> Enginee	rgy and Materials ering	Pre-requisite Courses		NL	L	

Module	Syllabus	Duration(h)
Module-I	Introduction to advanced joining techniques of similar and dissimilar materials	2
Module-II	Explosive Welding and Adhesive Bonding: theory and Key Variables, Parameters, Weld Quality, Equipment and Tooling, Advantages, Limitations and Applications,	4
Madula III	Electron Beam Welding- Background of the Process, Guns, Weld Environment, Welding in Different Degrees of Vacuum, Equipment and Applications,	6
mouule-III	Laser Beam Welding, Physics of Lasers, Types of Lasers, Process Parameters, Applications and Limitations.	0
Module-IV	Plasma arc welding: Plasma Arc Welding- theory and Principles, Transferred arc and Non-Transferred arc Techniques, Equipment, Joint Design Advantages, Disadvantages, and Applications,	6
	Magnetically impelled arc butt (MIAB) welding, Under Water Welding- Wet and Dry Under Water Welding	
Module-V	Vacuum brazing- Theory, Mechanisms and Key Variables, Equipment, Stop-Off and Parting Agents, Advantages, Limitations and Applications.	6
Module-VI	Ultrasonic welding-Principles of operation, Process Characteristics and Applications,	2
Module-VII	Diffusion Welding- theory and Principle of Process, Key Variables, Intermediate Materials, Deformation Welding, Equipment, Advantages, Limitations, Materials, Applications, Cold Pressure Welding- Process, Equipment and Setup, Applications	6
Module-VIII	Friction Welding- Basic Principles, Process Variants, Different Stages of Friction Welding, Mechanism of Bonding, Influence of Process Parameters, Weld Quality and Process Control, Joining of Dissimilar Materials, Advantages, Limitations and Applications,	8
	Friction Stir Welding-Metal flow phenomena, tools, process variables and applications,	
	Friction Stir Processing- Process, Application	
	Total contact hours	40

Learning Resources	Welding Engineers Hand Book- ASHE Vol . I, II, III and IV.
	Parmar R.S., Welding Processes and Technology, Khanna Publishers, Delhi
	Rossi, Welding Engineering , McGraw Hill.
	Schwartz M.M., Metals Joining Manual, McGraw-Hill Inc.
	Udin et al., Welding for Engineers, John Wiley & Sons.

Course		Course		Course	Donartmontal	L	Т	Р
Code	MM5225	Name	Engineering Tribology	Course	Elective	3	0	0
Course Oj Departm	ffering ent	<u>Metallu</u> Enginee	rgy and Materials ering	Pre	-requisite Courses		NI	L

Module	Syllabus	Duration(h)
Module-I	Introduction to Tribology: Structure of surfaces, Surface topography, Chemical and physical state of the solid surface; Materials Engg. for tribology	04
Module-II	Fundamental of contact between solid surfaces	04
Module-III	Friction and its measurement	04
Module- IV	Wear and its measurement: Classification of wear; Adhesive, Abrasive, Erosive, Cavitation, Corrosive, Oxidative, Fatigue and Fretting Wear	06
Module-V	Wear of alloys, polymers and ceramic; Mechanisms of wear; Wear Maps	04
Module-VI	Lubricant: Classification of lubricants, Physical properties of lubricants, Lubricants and their composition, Viscosity and its measurements	04
Module-VII	Hydrodynamic Lubrication: Frictional force, power loss, mechanism of pressure development, Reynold's equation, Navier-Stokes equation, Coefficient of friction	04
Module-VIII	Hydrostatic Lubrication: Hydrostatic step bearings, load carrying capacity, Oil flow through the hydrostatic step bearing	04
Module-IX	Tribology in practice: Material selection, Improved design and Materials Engg.;	02
Module-X	Design of (any one)- Cutting tool, Low friction surface, Seal	02
Module-XI	Bio-tribology and Nano-tribology	02
	Total contact hours	40

	Engineering Tribology: G. Stachowiak and A. Batchelor, Butterworth-Heinemann
Learning	Introduction to Tribology: B. Bhushan, John Wiley & Sons
Resources	Fundamentals of Tribology: R. Gohar and H. Rahnejat, World Scientific
	Friction, Wear, Lubrication: K.C. Ludema and L. Ajayi, CRC Press

Course		Course		Course	urse Departmen egory tal Elective	L	Т	Р
Code	MM5226	Name	Microsystem Technology	Category		3	0	0
Course Offering Department		<u>Metallu</u>	rgy and Materials Engineering	Pre-rea	quisite Course	S	NI	L

Module	Syllabus	Duration(h)
Module-I	Introduction to micro-electro mechanical systems (MEMS)	2
	Examples of Common devices (such as Inertial Measurement Units)	
Module-II	Materials for MEMS	8
	Common materials used and their properties(metals, polymers, ceramics and composites utilized in sensors and actuators); Piezoelectric materials and composites	
Module-III	Micromachining techniques	10
	Thin-film deposition (physical and chemical vapour deposition techniques); lithography (ultraviolet lithography, electron-beam lithography, soft-lithography); etching; bonding.	
Module- IV	Process integration	4
	Case Studies; Integration of nanomaterials to MEMS.	
Module-V	Packaging of MEMS devices	10
	Packaging materials and processes; Case Studies	
Module-VI	Reliability of MEMS devices	4
	Failure related to materials; Case Studies	
	Total contact hours	38

	S. D. Senturia, " Microsystem Design " Springer.
	N. Maluf, "An Introduction to Microelectromechanical Systems Engineering", Artech House
Learning	A. L. Hartzell, M. G. da Silva, and Herbert R. Shea, " MEMS Reliability ", Springer
Resources	M.J. Madou, " Fundamentals of micro fabrication: The Science of Miniaturization , Second Edition", CRC Press, USA, 2002.
	Reza Ghodssiand Pinyen Lin (Editors), " MEMS Materials and Processes Handbook ", Springer, 2011.

Course		Course	Nanostructures and	Course	Open	L	Т	Р
Code	MM5261	Name	Nanomaterials	Category	Elective	3	0	0
Course Offering Department		<u>Metallur</u>	gy and Materials Engineering	Pre-rea	quisite Courses	5	NI	L

Module	Syllabus	Duration(h)
Module-I	Introduction to nanostructures and nanomaterials.	01
Module-II	Classification of nanomaterials. Effect of size on the properties of materials and nanomaterials. Microstructural features of nanomaterials. Characterization of nanostructures and nanomaterials.	08
Module - III	Synthesis of Nanomaterials via chemical routes: Chemical precipitation and coprecipitation;Metal nanocrystals by reduction, Sol-gel synthesis; Solvothermal synthesis; Thermolysis, Microwave heating synthesis; Sonochemical synthesis; Electrochemical synthesis; , Photochemical synthesis, Synthesis in supercritical fluids	08
Module -1V	Preparation of Nanomaterials by Physical Methods: Inert gas condensation, Arc discharge, Plasma arc technique, Laser ablation, Ball Milling, Chemical vapour deposition, Electro deposition	06
Module-V	Properties of nanowires, quantum wells and quantum dots	06
Module VI	Carbon nanostructures : Synthesis and properties of fullerenes, carbon nanotubes, Graphene	08
Module-VII	Application of Nanostructures and nanomaterials	01
	Total contact hours	38

Learning	Nanostructures and nanomaterials : Synthesis, properties & applications by Guozhong Cao
Resources	Chemistry of nanomaterials : Synthesis, properties and applications by CNR Rao et.al.

Course		Course	Biomedical Materials and	Course	Open	L	Т	Р
Code	MM5262	Name	Devices	Category	Elective	3	0	0
Course Offering Department		<u>Metallu</u>	rgy and Materials Engineering	Pre-req	uisite Course	25	NI	L

Module	Syllabus	Duration(h)
Module-I	Basics:	04
	Materials and Biology: Metal, Ceramic, Polymer, Composite; Bioresorbale and biodegradable materials	
Module-II	Biomaterials Surfaces:	08
	Physics; Surface Structure and Properties; Surface Energy; Adsorption, Segregation, and Reconstruction at Surfaces; Reactions at surfaces; Protein-Surface Interactions; Host Response to Biomaterials; Cell Adhesion Mechanisms; Coagulation Cascade	
Module -111	Testing of biomaterials:	06
	In vitro and in vivo assessment; evaluation of blood material interactions; Microscopic techniques; Spectroscopic Techniques	
Module-IV	Degradation of Materials:	04
	Degradation of polymers; Degradation effect on metals and ceramics	
Module-V	Materials in medicine, biology and artificial organs:	12
	Cardiovascular Medical Devices; Implantable Cardiac Assist Devices; Orthopedic Applications; Dental Implantation; Intraocular Lens Implants; Drug Delivery Systems; Biomedical Sensors and Biosensors	
Module-VI	Case studies:	04
	Fiber Optic Biosensors, Nanobarcodes; Drug Delivery: Controlled Release; Mechanical Pumps; Artificial Pancreas, Cartilage, Nerve Regeneration	
	Total contact hours	38

Learning	Ratner, Buddy D., et al. Biomaterials Science: An Introduction to Materials in Medicine
Resources	B.Basu, D.Katti and Ashok Kumar;Advanced Biomaterials: Fundamentals,Processing and Applications; John Wiley & Sons, Inc., USA (ISBN: 978-0-470-19340-2), September, 2009.

Course		Course		Course		L	Т	Р
Code	MM5263	Name	Non-Destructive Testing	Course	Open Elective	3	0	0
Course Offering Department		<u>Metallu</u> Enginee	<u>rgy and Materials</u> ering	Pre-requisite Courses		NI	L	

Module	Syllabus	Duration(h)
Module-I	Fundamentals:	04
	Introduction to destructive and non-destructive testing. Scope and limitations of	
	NDT, Defects in casting, forging, heat-treated and other products namely	
Madula II	rolled/machined, welded products etc., Lauses of defects.	0.2
Module-II	Methods. Different visual examination aids.	02
Module-III	Leak and pressure testing of industrial components:	03
	Various methods of pressure and leak testing underlying principles of these testing	
	systems.	
Module-IV	Dye penetrant method:	04
	Liquid penetrant testing – procedure; penetrant testing materials, penetrant testing method – sensitivity; application and limitations.	
Module-V	Magnetic particle testing:	04
	Definition and principle; magnetizing technique, procedure, equipment, sensitivity and limitations.	
Module- VI	Ultrasonic methods:	06
	Basic principles of wave propagation, types of waves, methods of UT, their	
	advantages and limitations. Various types of transducers. Calibration methods, use	
	of standard blocks. inspection methods, technique for normal beam inspection,	
	flaw characterization technique, ultrasonic flaw detection equipment, modes of	
	display, Characterization of defects in castings, forgings, rolled and welded	
	products by UT. Thickness determination by ultrasonic method. Study of A, B and	
	C scan presentations. Immersion testing, advantage, limitations; acoustic emission	
Madula VII	testing – principles of AET and techniques.	0.4
Module-VII	Kaulographic testing of components:	04
	Industrial radiography techniques applications limitations Types of films screens	
	and nenetrameters. Interpretation of radiographs. Real time X-ray radiography	
	Safety in industrial radiography.	
Module-VIII	Electrical and thermal methods of NDT:	04
	Conductivity & resistivity methods and their applications. Eddy current testing.	
	Principle, instrument, techniques, sensitivity, application, limitation, Thermal	
	method: principle, equipment, advantages and limitations.	
Module-IX	Advanced methods of NDT:	03
	Holography, Tomography, MRI etc.	
Module-X	Selection of NDT Methods:	04
	VI, LPT, MPT, ECT, RT, UT, AET and thermography; reliability in NDT.	
	Total contact hours	38

	A. V. K. Suryanarayana: Testing of Metallic Materials. PHI Pub.
	Baldev Raj, T. Jayakumar, M. Thavasimuthu: Practical Non-Destructive Testing . Narosa Pub.
	House.
Learning	Ravi Prakash: Non-Destructive Testing Techniques. New Age International Pub.
Resources	ASM Metals Handbook (Vol. 17): Non-Destructive Evaluation of Materials. American Society of
nesources	Metals, Metals Park, Ohio, USA.
	Paul E. Mix: Introduction to Non-destructive Testing: A Training Guide. Wiley Pub.