

Department of Mathematics

Undergraduate Programme Course Structure and Syllabus

(Effective from 2025-26 admitting batch onwards)

Indian Institute of Engineering Science and Technology (IIEST), Shibpur

Botanic Garden, Howrah

Course	MA1101N	Course	Mathematics-I	Course	PC	L	T	P	
Code	WIATIOIN	Name	Mathematics-1	Category	B.Tech.(1 st Sem.)	3	1	0	

Pre-requisite Courses	Nil	Nil Co-requisite Courses Nil		Progressive Courses	Nil
Course Offering Department		Department of Mathematics		Data Book / Codes/Standards	Nil

The objective is to impart knowledge of mathematics necessary for B.Tech.							
education in general for all branches of engineering students.							

Module	Syllabus	Duration (class-hour)
I.	Functions of Single Real Variable: <i>n</i> -th order derivative, Leibnitz's theorem for successive differentiation, Rolle's theorem, M.V.T's of differential calculus, Taylor's theorem with Lagrange's and Cauchy's forms of remainders, Taylor's and Maclaurin's series, expansion of functions, curvature, asymptotes.	10
II.	Functions of Several Real Variables: Partial derivatives, chain rule, differential and small error, Euler's theorem for homogeneous functions, Taylor's theorem(statement only), expansion of functions of two real variables, maxima and minima, Lagrange's method of undetermined multipliers.	8
III.	Infinite Series: Concept of convergence, Geometric series and p-series, Comparison test, D'Alembert's ratio test, Cauchy's root test, Raabe's test, Gauss' test, Power series, radius of convergence.	5
IV.	Multiple Integrals: Double integral, change of order of integration, Jacobian, change of variables, applications.	4
V.	Improper Integrals: Definition, Convergence, Cauchy's principal value, Comparison test, μ-test, Beta and Gamma functions and their properties, relation between Gamma function and Beta function.	5
VI.	Ordinary Differential Equations: Higher order ordinary differential equations with constant coefficients, Euler's equation, method of variation of parameters, series solutionin the neighborhoodofan ordinary point, Legendre differential equation, Legendre polynomials, Orthogonality property, recurrence relations, Bessel differential equation, Bessel functions, recurrence relations.	10

Course	The outcome is the development of fundamental understanding and working
Outcome	knowledge of mathematics in the topics taught in the course for the purpose of
	engineering education in all branches as well as in relevant interdisciplinary studies.

Learning Resources (1) Advanced Engineering Mathematics - E. Kryszig,10th edition, Wiley India Edition (2010). (2) Engineering Mathematics- S.S.Sastry, 4th edition, PHI learning private Ltd. (2008). (3) Introductory Course in Differential Equations- Daniel A. Murray, Fb & c Limited, (2018). (4) Differential Calculus – B.C. Das & B.N.Mukherjee, 16th edition, U. N. Dhur& sons private Ltd., (1970). (5) Integral Calculus – B.C. Das &B.N.Mukherjee, 44th edition, U. N. Dhur& sons private Ltd., (1996). (6) Advanced Calculus- D.V. Widder. 3rd edition, Prentice-Hall, Inc. (1947).

Course	MA1102N	Course	Mothematics IA	Course	PC	L	T	P
Code	WIATIUZN	Name	Mathematics-IA	Category	B.Arch.(1 st Sem.)	2	1	0

Pre-requisite Courses	Nil	Nil Co-requisite Courses Nil		Progressive Courses	Nil
Course Offering Department		Department of Mathematics		Data Book / Codes/Standards	Nil

Course	The objective is to equip the students with the knowledge of mathematics necessary
Objective	for B.Arch. education.

Module	Syllabus	Duration
		(class-hour)
I.	Functions of a Single Real Variable: <i>n</i> -th order derivative, Leibnitz's theorem for successive differentiation, Taylor's theorem with Lagrange's and Cauchy's forms of remainders, Taylor's and Maclaurin's series, expansion of functions, curvature, asymptotes, curve tracing.	15
II.	Functions of Several Real Variables: Partial derivatives, chain rule, differential and small error, Euler's theorem for homogeneous functions, Taylor's theorem (statement only), expansion of functions of two real variables, maxima and minima, Lagrange's method of multipliers.	15
III.	Infinite Series: Concept of convergence, Geometric series and p series, Comparison test, D'Alembert's Ratio Test, Cauchy's Root Test, Raabe's Test, Gauss test, Power series, Radius of convergence.	6
IV.	Multiple Integral: Double integral, change of order of integration, Jacobian, change of variables, applications.	6

Course	The outcome is the development in the students of basic understanding and working
Outcome	knowledge of mathematics in the topics taught in the course for the purpose of their
	use in core B. Arch. Education and also in relevant interdisciplinary studies.

Learning Resources

- (1) Advanced Engineering Mathematics E. Kryszig, 10th edition, Wiley India Edition (2010).
- (2) Engineering Mathematics B. S. Grewal, 45th edition, Khanna Publishers, (2020).
- (3) Introductory Course in Differential Equations- Daniel A. Murray, Fb & c Limited, (2018).
- (4) Differential Calculus B.C. Das & B.N.Mukherjee, 16th edition, U. N. Dhur& sons private Ltd., (1970).
- (5) Integral Calculus B.C. Das &B.N.Mukherjee, 44th edition, U. N. Dhur& sons private Ltd., (1996).
- (6) Advanced Calculus- D.V. Widder. 3rd edition, Prentice-Hall, Inc. (1947).

Course	ourse MA1201N	Course	ourse Mathematics-II	Course	PC P. T I. (L	T	P
Code	WIATZOTN	Name	Wrathematics-11	Category	B.Tech.(2 nd Sem.)	3	1	0

Pre-requisite Courses	MA1101N	Co-requisite Courses Nil		Progressive Courses	Nil
Course Offering Department		Department of Mathematics		Data Book / Codes/Standards	Nil

Course	The objective of the course is to impart necessary mathematical knowledge to all					
Objective	branches of B.Tech. students for utilization in higher semesters.					
-						

Module	Syllabus	Duration (class-hour)
I.	Vector Space and Linear Transformation: Definition, subspace, linear combination, linear dependence and independence of vectors, span, basis, dimension of a vector space, linear transformation and some elementary properties.	7
II.	Matrices: Concept of Rank of matrices, reduction to Normal and Echelon forms, consistency of a system of linear equations, Orthogonal matrix, Hermitian and Unitary matrices, eigenvalues and eigenvectors, similarity transformation, diagonalization.	8
III.	Vector: Brief review of vector algebra, Shortest distance between skew lines, work done by a force, moment of a force about a point and about an axis, motion of a rigid body about a fixed axis, Directional derivatives, Gradient, Divergence, Curl, Line integral, Surface integral, Volume integral, Irrotational vector field, Gauss' divergence theorem and Stokes' theorem (statements only), Green's theorem in the plane, illustrations.	9
IV.	Fourier Series: Fourier series, Dirichlet's conditions, Half range series as Fourier sine and cosine series.	5
V.	Complex Variables: Introduction to Complex variable, Function, concept of limit and continuity, Derivative of complex function, Analytic function, Cauchy- Riemann equations, Harmonic function, line integral, Cauchy Goursat theorem (statement only), Cauchy's Integral formula, Generalized Cauchy's Integral formula (Statement only), Taylor's and Laurent's series (statements only), Type of singular points, Residue, Cauchy's Residue theorem and its application to evaluate real integrals using unit circle and semi-circle (without indentation).	13

Course
Outcome

A basic understanding of the concepts relating to the topics taught in the course and also working knowledge on these topics enabling the students in general of all branches of engineering to apply them in core and interdisciplinary engineering problems are the outcomes of the course.

Learning Resources

- (1) Advanced Engineering Mathematics E. Kryszig, 10th edition, Wiley India Edition (2010).
- (2) Engineering Mathematics B. S. Grewal, 45th edition, Khanna Publishers, (2020).
- (3) Engineering Mathematics- S.S.Sastry, 4th edition, PHI Learning Private Ltd. (2008).
- (4) Higher Algebra Chakraborty & Ghosh, 14th edition, U. N. Dhur& Sons Private Ltd., (1972).
- (5) Vector Analysis Ghosh & Maity, New Central Book Agency Ltd.(2011).

Course		Course		Course	PC B.Arch.(L	T	P
Code	MA1202N	Name	Mathematics-IIA	Category	2nd Sem.)	3	0	0

Pre-requisite Courses	MA1102N	Co-requisite Courses	Nil	Progressive Courses	Nil
Course Offering Department		Department of M	Iathematics	Data Book / Codes/Standards	Nil

Course	The objective of the course is to provide the B. Arch students with relevant				
Objective	mathematical knowledge for being utilized in higher semesters of B.Arch. studies.				

Module	Syllabus	Duration
		(class-hour)
I.	Co-ordinate Geometry: Two dimensions: Transformation of	4
	coordinates - Translation, Rotation, Reduction of general	
	equation of second degree.	
II.	Co-ordinate Geometry: Three dimensions: Coordinates,	9
	Direction Cosines, Planes, Straight lines, Spheres, Standard	
	equations of simple surface e.g. cylinders, cones, ellipsoids,	
	Hyperboloids etc.	
III.	Vector Algebra: Sum and products of vectors, Application in	4
	Geometry.	
IV.	Linear Programming: Geometrical ideas of convex sets, feasible	7
	solutions and domains etc. Fundamental theorem of LPP	
	(statement only), Graphical methods, Simplex Algorithm.	
***		10
V.	Statistics: Analysis of data (direct and grouped), Frequency	10
	Diagrams, Ogive, Histogram, Mean, Median, Mode, Measures of	
	dispersion, Skewness, Kurtosis, Fitting of curves (Least square	
	method), Correlation, Regression.	
VI.	Differential Equations: Second order differential equations with	8
	constant coefficients, Cauchy-Euler differential equation and	
	Variation of parameters.	

Course	The outcomes of the course are basic understandings and also working knowledge of					
Outcome	the concepts relating to the topics taught in the course with a view to enabling the					
	students to apply them in core Architecture and related interdisciplinary problems.					

Learning Resources

- (1) Analytical Geometry of Two & Three Dimensions & Vector Analysis R. M. Khan, New Central Book Agency (P) Ltd., (2012).
- (2) Vector Analysis: Schaum's Outline Series M. Spiegel, 2nd edition, Schaum's Outline Series, MaGraw-Hill.
- (3) Linear Programming & Game Theory J. G. Chakraborty & P.R. Ghosh, Moulik Library (2014).
- (4) Linear Programming & Theory of Games P. M. Karak, 2nd edition, New Central Book Agency (2015).
- (5) Statistical Methods N. G. Das, 1st edition, McGraw-Hill.
- (6) Fundamentals of Statistics A. M. Gun, M. K. Gupta, B. Dasgupta, World Press Private Ltd. (2013).
- (7) An Introduction to Differential Equations Ghosh & Maity, 9th edition, New Central Book Agency.
- (8) Ordinary and Partial Differential Equations M.D Raisinghania, 20th edition, S. Chand Publishing.

					PC	L	T	P
Course Code	MA2101N	Course Name	Mathematics-III/1	Course Category	B.Tech 3 rd Sem (EE, ME,. CST, IT)	3	0	0

Pre-requisite Courses	MA1101N MA1201N	Co-requisite Courses	Nil	Progressive Courses	Nil
Course Offering Department		Department of M	Tathematics	Data Book / Codes/Standards	Nil

Course
Objective

This course aims to develop a solid understanding of fundamental concepts in key areas of Applied Mathematics, focusing on their application to real-world data and practical problems.

Module	Syllabus	Duration (class-hour)
I.	Probability: Axiomatic approach to probability theory, Univariate probability distributions – discrete and continuous. Standard distribution: Binomial, Poisson, Geometric, Exponential, Normal, Uniform and Gamma. Bivariate distributions – concepts of joint and conditional distributions, Mathematical expectation, variance and covariance. Correlation coefficient. Tchebycheff's inequality.	15
II.	Statistics: Concepts of Statistics, Idea of sample, Correlation coefficients, Curve fitting: Method of Least Square, Simple Regression models.	6
III.	Laplace Transform: Definition, Laplace transform of elementary functions, Basic operational properties, Inverse Laplace transform, Convolution theorem, Applications to initial value problems involving Ordinary Differential Equations.	8
IV.	Linear Programming Problem: Basic solutions, Reduction of feasible solution to basic feasible solution, Convex combination, Convex set, Extreme points, Hyperplanes, Slack and surplus variables, Simplex method, Charnes' Big-M methods.	13
		42

Course	On completion of the course, students are expected to:
Outcome	 understand basic concepts of probability distributions, expectation, variance, correlation coefficient and their uses and also develop
	some basic idea in statistics.
	develop a basic knowledge Laplace Transform and apply to solve the
	differential equations.
	learn to handle the linear optimization problem.

Learning Resources

- 1. A. Mood, F. Graybill & D. Boes: Introduction to the Theory of Statistics, McGraw Hill Education, 2017.
- 2. P. G. Hoel, S. Port & C. Stone: Introduction to Probability Theory, Houghton Mifflin, 1971.
- 3. S. M. Ross: A first course in probability, Pearson Education India, 9th edition, 2013.
- 4. Amritava Gupta: Groundwork of Mathematical Probability and Statistics, Academic Publishers 6th edition, 2012.
- 5. P.M. Karak: Linear programming, New Central Book Agency Pvt. Ltd 2011.
- 6. J.G. Chakraborty & P.R. Ghosh: Linear programming and Game Theory, Moulik Library.
- 7. R. V. Churchill: Operational Mathematics, McGraw-Hill 3rd edition. 1972.
- 8. Schaum'sOutline of Laplace Transforms, Murray R. Spiegel, McGraw-Hill, 1965.

					PC	L	T	P	
Course Code	MA2102N	Course Name	Mathematics-III/2	Course Category	B.Tech 3 rd Sem (ETCE, AE)	3	0	0	

Pre-requisite Courses	MA1101N MA1201N	Co-requisite Courses	Nil	Progressive Courses	Nil
Course Offering Department		Department of Mathematics		Data Book / Codes/Standards	Nil

	·
Course	This course provides a comprehensive foundation in applied mathematics,
Objective	focusing on probability and statistics, Laplace transforms, linear
	programming, and numerical methods. Students will develop proficiency in
	probability theory, including discrete and continuous distributions, statistical
	measures, and regression analysis; apply Laplace transforms to solve
	ordinary differential equations; utilize the Simplex method for linear
	programming optimization; and implement numerical techniques for solving
	nonlinear equations and initial value problems.

Module	Syllabus	Duration (class-hour)
I	Probability & Statistics: Axiomatic approach to probability theory, Univariate probability distributions — discrete and continuous. Standard distributions: Binomial, Poisson, Exponential, Normal, Uniform. Mathematical expectation, variance and covariance. Correlation coefficient. Concept of Statistics, Idea of sample correlation coefficients, curve fitting: Method of Least Square, Simple Regression models.	16
II	Laplace Transform: Definition, Laplace transform of elementary functions, Basic operational properties, Inverse Laplace transform, convolution theorem, Applications to initial value problems involving Ordinary Differential Equations.	8
III	Linear Programming Problem: Basic solution, Reduction of feasible solution to basic feasible solution, convex combination, Convex combination, Convex set, Extreme points, Hyperplanes, Slack and surplus variables, Simplex Method.	10

IV	Introduction to numerical Methods: Numerical solution	8
	of $f(x)$ =0: Bisection Method, Secant Method, Regula Falsi	
	Method, Newton-Raphson Method. Numerical solution of	
	initial value problems involving Ordinary Differential	
	Equations: Eular's Method, Runge-Kutta Methods.	
		42

Course Outcome

Upon completing this course, students will be proficient in applying probability theory to analyze data, utilize Laplace transforms to solve differential equations, optimize linear systems using the Simplex method, and employ numerical techniques to approximate solutions to complex mathematical problems.

Learning Resources

- 1. A. Mood, F. Graybill& D. Boes: Introduction to the Theory of Statistics, McGraw Hill Education, 2017.
- 2. P. G. Hoel, S. Port & C. Stone: Introduction to Probability Theory, Houghton Mifflin, 1971.
- 3. S. A. Mollah: Numerical Analysis and Computational Procedures, Books & Allied (P) PvtLtd, 2000.
- 4. Amritava Gupta: Groundwork of Mathematical Probability and Statistics, Academic Publishers 6th edition, 2012.
- 5. P.M. Karak: Linear programming, New Central Book Agency Pvt. Ltd 2011.
- 6. J.G. Chakraborty & P.R. Ghosh: Linear programming and Game Theory, Moulik Library, 2021.
- 7. GuruprasadSamanta: Engineering Mathematics-II A, Aryan Publishing House, 2024.

C		C.	Mathamatica	C.	PC B.Tech	L	Т	P
Course Code	MA- 2103N	Course Name	Mathematics -III/3	Course Category	3 rd Sem (MET, MIN)	3	0	0

Pre-requisite Courses	MA1101N MA1201N	Co-requisite Courses	Nil	Progressive Courses	Nil
Course Offering Department		Department of Mathematics		Data Book / Codes/Standards	Nil

Course Objective	To develop fundamental concepts in some important topics of Applied Mathematics with a view to applications involving real-life data.

Module	Syllabus	Duration
		(class-hour)
	Probability & Statistics: Axiomatic approach to	16
	probability theory, Univariate probability distributions	
1	 discrete and continuous. Standard distributions: 	
	Binomial, Poisson, Exponential, Normal, Uniform.	
	Mathematical expectation, variance and covariance.	
	Correlation coefficient. Concept of Statistics, Idea of	
	sample correlation coefficients, curve fitting: Method of	
	Least Square, Simple Regression models.	
	Introduction to graph theory: Basic Concept of	6
	graph, Walk, Path, Circuit, Euler graph and	
2	Hamiltonian graph, Cut-sets and cut-vertices, Diagraph,	
	Weighted graph, Bipartite graph.	
	Linear Programming Problem: Basic solution,	10
	reduction of feasible solution to basic feasible solution,	
3	convex combination, convex set, extreme points,	
	hyperplanes, slack and surplus variables, Simplex	
	Method.	
	Introduction to numerical Methods: Numerical	10
_	solution of $f(x)=0$: Bisection Method, Secant Method,	
4	Regula Falsi Method, Newton-Raphson Method.	
	Numerical solution of ODE: Eular's Method, Runge-	
	Kutta Methods.	
	Numerical integration: Trapezoidal Rule, Simpson's	
	1/3rule, Simpson's 3/8 rule.	
		42

Course Outcome

On completion of the course, students are expected to:

- understand basic concepts of probability distributions, expectation, variance, correlation coefficient and their uses and also develop some basic idea in statistics.
- develop a basic knowledge in graph theory and apply this to some real-life problems.
- learn to handle optimization problems.
- learn to handle situations wherethe mathematical problems cannot be solved analytically.

Learning Resources

- 1. A. Mood, F. Graybill& D. Boes: Introduction to the Theory of Statistics, McGraw Hill Education, 2017.
- 2. P. G. Hoel, S. Port & C. Stone: Introduction to Probability Theory, Houghton Mifflin, 1971.
- 3. S. A. Mollah: Numerical Analysis and Computational Procedures, Publisher: Books & Allied (P) Ltd.
- 4. Amritava Gupta: Groundwork of Mathematical Probability and Statistics, Academic Publishers 6th edition, 2012.
- 5. J.G. Chakraborty & P.R. Ghosh: Linear programming and Game Theory, Moulik Library.
- 6. GuruprasadSamanta: Engineering Mathematics-II A, Aryan Publishing House, Kolkata-700048.
- 7. GuruprasadSamanta: Engineering Mathematics-III A, Aryan Publishing House, Kolkata-700048.

					PC	L	Т	P
Course Code	MA2104N	Course Name	Mathematics- III/4	Course Category	B.Tech 3 rd Sem (CE)	3	0	0

Pre-requisite Courses	MA1101N MA1201N	Co-requisite Courses	Nil	Progressive Courses	Nil
Course Offering Department		Department of M	Mathematics	Data Book / Codes/Standards	Nil

Course	The objective of this course is to equip students with a strong foundation in		
Objective	probability theory and statistical methods, enabling them to model, analyze, and		
	interpret data and uncertainty in different systems, interpret data and gather		
	knowledge about estimation of parameters.		
	This course will provide them with a comprehensive understanding of linear		
	programming theory, solution techniques, and applications.		
	The third module introduces the fundamental concepts, classification, and		
	solution techniques of partial differential equations (PDEs). The course is		
	designed to develop students' analytical skills and provide a foundation for		
	modeling and solving problems involving functions of several variables.		

Module	Syllabus	Duration (class have)
1.	Probability and Statistics: Axiomatic approach to probability theory, Univariate probability distributions – discrete and continuous. Standard distributions: Binomial, Poisson, Geometric, Exponential, Normal, Uniform. Bivariate distributions – concepts of joint and conditional distributions, Mathematical expectation, variance and covariance. Concept of Statistics, Idea of sample correlation coefficients, curve fitting: Method of Least Square, Regression models, Concept of Estimation.	(class-hour)
2.	Linear Programming Problem: Basic solution, convex combination, convex set, extreme points, hyperplanes, slack and surplus variables, Simplex Method.	09
3.	Partial Differential Equation: Introduction to first order PDE, Classification of 2 nd order PDE, Solution of Heat, Wave & Laplace equation by variables separation technique with applications.	14
		42

Course Outcome

Upon successful completion of this course, students will be able to:

Understand the basic concepts of probability and statistics and apply them to solve real-world problems.

Formulate and solve linear programming problems using the simplex method and interpret the results for decision-making.

Solve first-order and second-order PDEs and apply them to basic physical and engineering problems involving heat conduction, wave motion, and potential theory.

Learning Resources

- 1. A. Mood, F. Graybill & D. Boes: Introduction to the theory of statistics, McGraw Hill Education, 2017.
- 2. P. G. Hoel, S. Port & C. Stone: Introduction to probability Theory, Houghton Mifflin, 1971.
- 3. S.M. Ross: A first course in probability, Pearson Education India; 9th edition, 2013.
- 4. Amritava Gupta: Groundwork of Mathematical Probability and Statistics, Academic Publishers 6th edition, 2012.
- 5. P.M. Karak: Linear programming, New Central Book Agency (P) Limited, 2011.
- 6. J.G. Chakraborty & P.R. Ghosh: Linear programming and Game theory, Moulik Library, 2012.
- 7. GuruprasadSamanta: Engineering Mathematics-II A, Aryan Publishing House, Kolkata-700048, 2024.
- 8. GuruprasadSamanta: A Textbook of Partial Differential Equations, New Age International Publishers, 2017.
- 9. <u>Erwin Kreyszig</u>: Advanced Engineering Mathematics, Wiley, 8th Edition (International).
- 10. B V Ramana: Higher Engineering Mathematics, Tata McGraw Hill Education.