SERIAL NUMBER 2:

STATISTICS

- 1. Define consistent and unbiased estimators. Show that the sample mean is a consistent and unbiased estimator of the population mean.
- 2. Show that the sample variance is not an unbiased estimator of the population variance. Find an unbiased estimator of population variance.
- 3. If T is an unbiased estimator of a population parameter θ , show that T^2 is a positively biased estimator of θ^2 ; but if T is a consistent estimator of θ then show that T^2 is also a consistent estimator of θ^2 .
- 4. Of 400 mangoes selected at random from a large stock, 53 were found to be bad. Test at 1% significance level the hypothesis that on the average 10% of the mangoes were bad.
- 5. The regression lines of X on Y and of Y on X are x = 4y + 5 and y = kx + 4 respectively. Show that $0 < k \leq \frac{1}{4}$. If $k = \frac{1}{16}$ find the means of the variable and the correlation coefficient between them.
- 6. In a random sample of 400 articles 40 are found to be defective. Obtain 95% confidence interval for the true proportion of defective in the population of that article.
- 7. Suppose $x_1, x_2, ..., x_n$ is a random sample from a normal distribution with mean μ and variance σ^2 . Given that μ and σ are both unknown, find the maximum likelihood estimators (MLEs) of μ and σ . What will be the MLE of $\frac{1}{\mu}$?
- 8. The number of car accidents in the *i*-th city is x_i in a year. The number of car accidents follow Poisson distribution with mean $k_i\lambda$, where k_i is the population of the *i*-th city. Choose *n* cities randomly for a sample. Find the MLE of λ .
- 9. To test whether a coin is perfect, the coin is tossed five times. The null hypothesis of perfectness is rejected if more than four heads are obtained. What is the probability of Type I error? Find the probability of Type II error when the corresponding probability of getting head is 0.2.
- 10. A random sample with observations 65, 71, 64, 71, 70, 69, 64, 63, 67, 68 is drawn from a normal population with standard deviation $\sqrt{7.056}$. Test the hypothesis that the population mean is 69 at 1% level of significance. [Given that P(0 < z < 2.58) = 0.495]
- 11. A dice was thrown 400 times and 'six' resulted eight times. Do the data justify the hypothesis of an unbiased dice?

- 12. Can you fit a curve $y = ab^{c^x}$, where a, b and c are parameters? Suggest your computational procedure.
- 13. Test whether the following two lines are regression lines or not:
 i) 2y + 5x + 7 = 0
 ii) y + 7x + 12 = 0
- 14. In Kolkata, 325 men out of 600 were found to be smokers. Does this information support the conclusion that the majority of men in Kolkata are smokers? (State the hypothesis clearly).
- 15. Derive normal equations to fit
 - i) the straight line y = a + bx
 - ii) the parabola $y = a + bx + cx^2$
- 16. If σ_x , σ_y and σ_{x-y} are the standard deviations of the variates x, y and x-y respectively, then show that

$$\rho_{xy} = \frac{\sigma_x^2 + \sigma_y^2 - \sigma_{x-y}^2}{2\sigma_x\sigma_y}$$

17. In 1950 in India the mean life expectancy was 50 years. If the life expectancies from a random sample of 11 persons are 58.2, 56.2, 54.2, 50.4, 44.2, 61.9, 57.5, 53.4, 49.7, 55.4, 57.0 does it confirm the expected view?