Design and Optimization of Dispersion Managed Optical Fibers with Emphasis on Self-Similar Pulse Propagation in Nonlinear Domain
CSIR-SRF Fellowsip
1. Chowdhury, D., Ghosh, D., Bose, N., & Basu, M. (2019). Parabolic pulse regeneration in normal dispersion-decreasing fibers and its equivalent substitutes in presence of third-order dispersion. Applied Physics B, 125(6), 106.
2. Ghosh, B. K., Ghosh, D., & Basu, M. (2019). Potential use of nonlinearity-induced virtual gain on parabolic pulse formation in highly nonlinear tapered fiber system. Journal of Optics, 21(4), 045503.
3. Chowdhury, D., Ghosh, D., & Basu, M. (2018). An efficient way of third-order dispersion compensation for reshaping parabolic pulses through normal dispersion fiber amplifier. Journal of Optics, 20(9), 095503.
4. Ghosh, B. K., Ghosh, D., & Basu, M. (2018). Prospective use of a normally dispersive step-index chalcogenide fiber in nonlinear pulse reshaping. Applied Optics, 57(13), 3348-3356.
5. Chowdhury, D., Bose, N., Ghosh, D., & Basu, M. (2017). Performance of different normal dispersion fibers to generate triangular optical pulses. Optical and Quantum Electronics, 49(9), 294.
6. Ghosh, D., & Basu, M. (2017). Designing suitable dispersion decreasing active fibers to generate parabolic pulses in presence of macro bending. Optical and Quantum Electronics, 49(1), 8.
7. Chowdhury, D., Ghosh, D., Basu, M., Mohapatra, H., & Hosain, S. I. (2016). Study of parabolic self-similar optical pulse generation in single-mode fibers using variational approximation for the LP01 mode. Optik, 127(20), 8386-8393.
8. Ghosh, D., Chowdhury, D., & Basu, M. (2015). Silica based highly nonlinear fibers to generate parabolic self-similar pulses. Optical and Quantum Electronics, 47(8), 2615-2635.
9.Bose, N., Ghosh, D., Mukherjee, S., & Basu, M. (2013). Nonlinear pulse reshaping in a designed erbium-doped fiber amplifier with a multicladded index profile. Optical Engineering, 52(8), 086104.
10. Mohapatra, H., Ghosh, D., Hosain, S. I., & Pattojoshi, P. (2012). Bend loss calculation in single-mode graded-index fibers using variational fields. Optics Communications, 285(24), 5151-5156.