# | List of Publication by Prof. Smita Pal (Sarkar) |
---|---|
1 | Subhadip Karmakar and Smita Pal Sarkar, Instantaneous Heat Source Response in a Rotating Orthotropic Thermoelastic Medium Using Three-Phase-Lag Model, 59(03), pp. 1614-1634, Mechanics of Solids, 2024 |
2 | Prajjwal Parmar, Saroj Mandal, and Smita Pal Sarkar, Study of Generalized Two-Temperature Magneto Thermoelastic Problem Involving Memory Dependent Derivative under Fuzzy Environment, 59 (04), pp. 2366-2386, Mechanics of Solids, 2024 |
3 | Saroj Mandal & Smita Pal(Sarkar), Memory Response on a Piezoelectric Rod under Three-Phase-Lag Model, Waves in Random and Complex Media, 2023 |
4 | Aktar Seikh, Soumen Shaw, and Smita Pal (Sarkar), Laser-Induced Thermoelastic Response in an Isotropic Medium Having Variable Material Moduli, 63 (07), 1300-1318, Computational Mathematics and Mathematical Physics, 2023 |
5 | Aktar Seikh, Soumen Shaw, and Smita Pal (Sarkar), Memory response on thermoelastic behavior with temperature dependent material moduli under mechanical strip load, 63 (02), 295-310, Computational Mathematics and Mathematical Physics, 2023 |
6 | S. Moi, S. Biswas, and S. P. Sarkar, An efficient method for solving neutrosophic Fredholm integral equations of second kind, 08 (01), 01-22, Granular Computing, 2023 |
7 | S. Moi, S. Biswas, and S. P. Sarkar, A Lagrange spectral collocation method for weakly singular fuzzy fractional Volterra integro-differential equations, 27 (08), 4483-4499, Soft Computing, 2023 |
8 | Saroj Mandal, Biswajit Singh & Smita Pal(Sarkar), Memory response in dual-phase-lag thermoelastic medium due to instantaneous heat source, Waves in Random and Complex Media, 2022 |
9 | Sandip Moi, Suvankar Biswas, and Smita Pal Sarkar, Finite difference method for fuzzy singular integro-differential equation deriving from fuzzy non-linear differential equation, Granular Computing, 2022 |
10 | S. Mandal, S. Pal (Sarkar) and T.K. Roy, An interval parametric approach for the solution of one dimensional generalized thermoelastic problem, 14(1), 67-76, Journal of Solid Mechanics, 2022 |
11 | S. Moi, S. Biswas, and S, Pal Sarkar, An efficient method for solving neutrosophic Fredholm integral equations of second kind, Granular Computing, 2022 |
12 | S. Moi, S. Biswas, and S. Pal Sarkar, A New Collocation Method for Fuzzy Singular Integro-Differential Equations, International Journal of Applied and Computational Mathematics, 2022 |
13 | S. Mandal and S. Pal (Sarkar), Solution of a Two Dimensional Thermoelastic Problem Due to an Exponentially Distributed Temperature at the Boundary in Presence of a Moving Heat Source, International Journal of Applied and Computational Mathematics, 2022 |
14 | S. Biswas, S. Moi and S. Pal Sarkar, Numerical integration of neutrosophic valued function by Gaussian quadrature methods, Arabian Journal of Mathematics, 2022 |
15 | S. Moi, S. Biswas & S. Pal(Sarkar), Second-order neutrosophic boundary-value problem, Complex & Intelligent Systems, 2021 |
16 | B. Singh and S. Pal (Sarkar), State-space approach on two-temperature three-phase-lag thermoelastic infinite medium with a spherical cavity due to memory dependent derivative, Archive of Applied Mechanics, 2021 |
17 | B. Singh, S. Pal (Sarkar) and K. Barman, Modeling of memory dependent derivative under three phase lag in generalised thermo-viscoelasticity, International Journal of Applied and Computational Mathematics, 2021 |
18 | S. Mandal and S. Pal (Sarkar), On piezoelectric effect based on Green-Lindsay theory of thermoelasticity, Waves in Random and Complex Media, 2021 |
19 | S. Mandal, M. Middya and S. Pal (Sarkar), Two temperature generalized thermoelasticity involving memory-dependent derivative under fuzzy environment, Waves in Random and Complex Media, 2021 |
20 | S. Biswas, S. Moi and S.Pal(Sarkar), Study of interval type-2 fuzzy singular integro-differential equation by using collocation method in weighted space, New Mathematics and Natural Computation, 2021 |
21 | S. Biswas, S. Moi and S. Pal Sarkar, Neutrosophic Riemann integration and its properties, 25.22, 13987-13999, Soft Computing, 2021 |
22 | S. Biswas, S. Moi and S. Pal Sarkar, Numerical solution of fuzzy Fredholm integro-differential equations by polynomial collocation method, 40.7, 1-33, Computational and Applied Mathematics, 2021 |
23 | B. Singh and S.Pal (Sarkar), Magneto-thermoelastic interaction in transversely isotropic medium with memory dependent derivative under three theories, Waves in Random and Complex Media, 2020 |
24 | B. Singh, S. Pal (Sarkar) & K. Barman, Memory dependent derivative under generalized three phase-lag thermoelasticity model with a heat source, 16(6), 1337-1356, Multidiscipline Modelling in Materials and Structures, 2020 |
25 | B. Singh, S. Pal (Sarkar) & K. Barman, Eigenfunction Approach to Generalized Thermo-Viscoelasticity with Memory Dependent Derivative Due to Three Phase Lag Heat Transfer, 43(09), 1100-1119, Journal of Thermal Stresses, 2020 |
26 | B. Singh, I. Sarkar & S. Pal (Sarkar), Temperature-rate dependent thermoelasticity theory with memory dependent derivative: Energy, Uniqueness theorems and Variational Principle, 142(10), 102103 (05 pages), ASME Journal of Heat Transfer, 2020 |
27 | B. Singh and S. Pal (Sarkar), Magneto thermoelastic interaction with memory response due to laser pulse under Green Nagdhi theory in an orthotropic medium, Mechanics Based Design of Structures and Machines, 2020 |
28 | B. Singh & S. Pal (Sarkar), Thermal shock behaviour on generalized thermoelastic semi-infinite medium with moving heat source under Green Naghdi-III model, 5 (3), 79 - 89, Mathematical Models in Engineering, 2019 |
29 | B. Singh, S. Pal (Sarkar) & K. Barman, Thermoelastic interaction in the semi-infinite solid medium due to three-phase-lag effect involving memory-dependent derivative, 42 (7), 874-889, Journal of Thermal Stresses, 2019 |
30 | S. Mandal , S. Pal(Sarkar) and T. K. Roy, An investigation on two temperature Dual-Phase-Lag model of thermoelasticity under fuzzy environment, 05(06), Article no. 166, International Journal of Applied and Computational Mathematics, 2019 |
31 | A. Lahiri, S. Sarkar & B. Das, Thermal Stresses in an Isotropic Elastic Slab Due to Prescribed Surface Temperature, 3 (10), 451 – 467, Adv. Theor. Appl. Mech., 2010 |
32 | A. Lahiri, N. C. Das, S. Sarkar & M. Das, Matrix Method of Solution of Coupled Differential Equations and Its Application in Generalized Thermoelasticity, 101 (6), 571 - 590, Bulletin of the Calcutta Mathematical Society, 2009 |
33 | N. C. Das, A. Lahiri & S. Sarkar, Eigenvalue Approach to Three Dimensional Coupled Thermoelasticity in a Rotating Transversely Isotropic Medium, 25 (3), 237 – 257, Tamsui Oxford Journal of Mathematical Sciences, 2009 |
34 | N.C.Das, A.Lahiri & S.Sarkar, Eigenvalue Approach to Generalized Thermoelasticity with Temperature Dependent Modulus of Elasticity in Transversely Isotropic Elastic Medium, 100 (4), 411 – 426, Bulletin of the Calcutta Mathematical Society, 2008 |
35 | Das, N. C.;Lahiri, A.;Sarkar, S.;Basu, S., Reflection of generalized thermoelastic waves from isothermal and insulated boundaries of a half space, 56, 2795 - 2805, Computers and Mathematics with Applications, 2008 |
Created: 23 November 2019